1 Preamble

1.1 Install Libraries

#install.packages("remotes")
#remotes::install_github("DevPsyLab/petersenlab")

1.2 Load Libraries

library("lavaan")
library("semTools")
library("semPlot")
library("lcsm")
library("MBESS")
library("tidyverse")

2 Simulate Data

set.seed(52242)

sampleSize <- 100

X <- rnorm(sampleSize)
M <- 0.5*X + rnorm(sampleSize)
Y <- 0.7*M + rnorm(sampleSize)

mydata <- data.frame(
  X = X,
  Y = Y,
  M = M)

3 Import data

6 Plot Observed Growth Curve

Transform data from wide to long format:

Demo.growth$id <- 1:nrow(Demo.growth)

Demo.growth_long <- Demo.growth %>% 
  pivot_longer(
    cols = c(t1,t2,t3,t4),
    names_to = "variable",
    values_to = "value",
    names_pattern = "t(.)") %>% 
  rename(
    timepoint = variable,
    score = value
  )

Demo.growth_long$timepoint <- as.numeric(Demo.growth_long$timepoint)

Plot the observed trajectory for each participant:

ggplot(
  data = Demo.growth_long,
  mapping = aes(
    x = timepoint,
    y = score,
    group = id)) +
  geom_line() +
  scale_x_continuous(
    breaks = 1:4,
    name = "Timepoint") +
  scale_y_continuous(
    name = "Score")

7 Latent Growth Curve Model

7.1 Model Syntax

7.1.1 Abbreviated

lgcm1_syntax <- '
  # Intercept and slope
  intercept =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
  slope =~ 0*t1 + 1*t2 + 2*t3 + 3*t4

  # Regression paths
  intercept ~ x1 + x2
  slope ~ x1 + x2
  
  # Time-varying covariates
  t1 ~ c1
  t2 ~ c2
  t3 ~ c3
  t4 ~ c4
'

7.1.2 Full

lgcm2_syntax <- '
  # Intercept and slope
  intercept =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
  slope =~ 0*t1 + 1*t2 + 2*t3 + 3*t4

  # Regression paths
  intercept ~ x1 + x2
  slope ~ x1 + x2
  
  # Time-varying covariates
  t1 ~ c1
  t2 ~ c2
  t3 ~ c3
  t4 ~ c4
  
  # Constrain observed intercepts to zero
  t1 ~ 0
  t2 ~ 0
  t3 ~ 0
  t4 ~ 0
  
  # Estimate mean of intercept and slope
  intercept ~ 1
  slope ~ 1
'

7.2 Fit the Model

7.2.1 Abbreviated

lgcm1_fit <- growth(
  lgcm1_syntax,
  data = Demo.growth,
  missing = "ML",
  estimator = "MLR",
  meanstructure = TRUE,
  int.ov.free = FALSE,
  int.lv.free = TRUE,
  fixed.x = FALSE,
  em.h1.iter.max = 100000)
Warning: lavaan->lav_partable_check():  
   automatically added intercepts are set to zero: ("x1", "x2", "c1", "c2", 
   "c3", "c4")

7.2.2 Full

lgcm2_fit <- sem(
  lgcm2_syntax,
  data = Demo.growth,
  missing = "ML",
  estimator = "MLR",
  meanstructure = TRUE,
  fixed.x = FALSE,
  em.h1.iter.max = 100000)

7.3 Summary Output

7.3.1 Abbreviated

summary(
  lgcm1_fit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
Warning: lavaan->lav_partable_check():  
   automatically added intercepts are set to zero: ("x1", "x2", "c1", "c2", 
   "c3", "c4")
Warning: lavaan->lav_partable_check():  
   automatically added intercepts are set to zero: ("x1", "x2", "c1", "c2", 
   "c3", "c4")
lavaan 0.6-19 ended normally after 32 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        38

  Number of observations                           400
  Number of missing patterns                         1

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                40.774      40.982
  Degrees of freedom                                27          27
  P-value (Chi-square)                           0.043       0.041
  Scaling correction factor                                  0.995
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              2345.885    2414.540
  Degrees of freedom                                30          30
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.972

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.994       0.994
  Tucker-Lewis Index (TLI)                       0.993       0.993
                                                                  
  Robust Comparative Fit Index (CFI)                         0.992
  Robust Tucker-Lewis Index (TLI)                            0.992

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -5782.507   -5782.507
  Scaling correction factor                                  0.991
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -5762.120   -5762.120
  Scaling correction factor                                  0.993
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               11641.014   11641.014
  Bayesian (BIC)                             11792.690   11792.690
  Sample-size adjusted Bayesian (SABIC)      11672.114   11672.114

Root Mean Square Error of Approximation:

  RMSEA                                          0.036       0.036
  90 Percent confidence interval - lower         0.006       0.007
  90 Percent confidence interval - upper         0.057       0.057
  P-value H_0: RMSEA <= 0.050                    0.854       0.849
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.040
  90 Percent confidence interval - lower                     0.019
  90 Percent confidence interval - upper                     0.059
  P-value H_0: Robust RMSEA <= 0.050                         0.793
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.030       0.030

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  intercept =~                                                          
    t1                1.000                               1.386    0.875
    t2                1.000                               1.386    0.660
    t3                1.000                               1.386    0.507
    t4                1.000                               1.386    0.411
  slope =~                                                              
    t1                0.000                               0.000    0.000
    t2                1.000                               0.769    0.366
    t3                2.000                               1.539    0.562
    t4                3.000                               2.308    0.685

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  intercept ~                                                           
    x1                0.608    0.059   10.275    0.000    0.439    0.453
    x2                0.604    0.062    9.776    0.000    0.436    0.423
  slope ~                                                               
    x1                0.262    0.029    8.968    0.000    0.341    0.352
    x2                0.522    0.032   16.302    0.000    0.678    0.658
  t1 ~                                                                  
    c1                0.143    0.045    3.198    0.001    0.143    0.089
  t2 ~                                                                  
    c2                0.289    0.047    6.215    0.000    0.289    0.131
  t3 ~                                                                  
    c3                0.328    0.047    7.011    0.000    0.328    0.112
  t4 ~                                                                  
    c4                0.330    0.057    5.814    0.000    0.330    0.090

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .intercept ~~                                                          
   .slope             0.075    0.040    1.890    0.059    0.152    0.152
  x1 ~~                                                                 
    x2                0.141    0.050    2.798    0.005    0.141    0.140
    c1               -0.039    0.051   -0.762    0.446   -0.039   -0.038
    c2                0.023    0.048    0.493    0.622    0.023    0.024
    c3                0.027    0.050    0.544    0.586    0.027    0.028
    c4               -0.023    0.045   -0.519    0.604   -0.023   -0.024
  x2 ~~                                                                 
    c1               -0.018    0.050   -0.358    0.721   -0.018   -0.019
    c2               -0.003    0.044   -0.075    0.940   -0.003   -0.004
    c3                0.155    0.048    3.239    0.001    0.155    0.170
    c4               -0.104    0.043   -2.421    0.015   -0.104   -0.116
  c1 ~~                                                                 
    c2                0.080    0.045    1.793    0.073    0.080    0.086
    c3               -0.030    0.050   -0.585    0.559   -0.030   -0.032
    c4                0.127    0.048    2.668    0.008    0.127    0.140
  c2 ~~                                                                 
    c3                0.003    0.041    0.078    0.938    0.003    0.004
    c4                0.031    0.044    0.715    0.475    0.031    0.036
  c3 ~~                                                                 
    c4                0.034    0.044    0.767    0.443    0.034    0.039

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .intercept         0.580    0.061    9.501    0.000    0.419    0.419
   .slope             0.958    0.030   32.177    0.000    1.244    1.244

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .t1                0.580    0.091    6.386    0.000    0.580    0.231
   .t2                0.596    0.056   10.627    0.000    0.596    0.135
   .t3                0.481    0.051    9.434    0.000    0.481    0.064
   .t4                0.535    0.094    5.709    0.000    0.535    0.047
   .intercept         1.079    0.108    9.996    0.000    0.562    0.562
   .slope             0.224    0.027    8.373    0.000    0.378    0.378
    x1                1.064    0.068   15.614    0.000    1.064    1.000
    x2                0.943    0.065   14.401    0.000    0.943    1.000
    c1                0.972    0.064   15.306    0.000    0.972    1.000
    c2                0.900    0.063   14.372    0.000    0.900    1.000
    c3                0.876    0.067   13.041    0.000    0.876    1.000
    c4                0.852    0.057   15.005    0.000    0.852    1.000

R-Square:
                   Estimate
    t1                0.769
    t2                0.865
    t3                0.936
    t4                0.953
    intercept         0.438
    slope             0.622

7.3.2 Full

summary(
  lgcm2_fit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 31 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        44

  Number of observations                           400
  Number of missing patterns                         1

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                26.059      26.344
  Degrees of freedom                                21          21
  P-value (Chi-square)                           0.204       0.194
  Scaling correction factor                                  0.989
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              2345.885    2414.540
  Degrees of freedom                                30          30
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.972

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.998       0.998
  Tucker-Lewis Index (TLI)                       0.997       0.997
                                                                  
  Robust Comparative Fit Index (CFI)                         0.998
  Robust Tucker-Lewis Index (TLI)                            0.997

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -5775.149   -5775.149
  Scaling correction factor                                  0.994
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -5762.120   -5762.120
  Scaling correction factor                                  0.993
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                               11638.299   11638.299
  Bayesian (BIC)                             11813.923   11813.923
  Sample-size adjusted Bayesian (SABIC)      11674.308   11674.308

Root Mean Square Error of Approximation:

  RMSEA                                          0.025       0.025
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.051       0.052
  P-value H_0: RMSEA <= 0.050                    0.938       0.933
  P-value H_0: RMSEA >= 0.080                    0.000       0.000
                                                                  
  Robust RMSEA                                               0.024
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.051
  P-value H_0: Robust RMSEA <= 0.050                         0.940
  P-value H_0: Robust RMSEA >= 0.080                         0.000

Standardized Root Mean Square Residual:

  SRMR                                           0.014       0.014

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  intercept =~                                                          
    t1                1.000                               1.386    0.875
    t2                1.000                               1.386    0.660
    t3                1.000                               1.386    0.507
    t4                1.000                               1.386    0.412
  slope =~                                                              
    t1                0.000                               0.000    0.000
    t2                1.000                               0.768    0.366
    t3                2.000                               1.536    0.562
    t4                3.000                               2.304    0.684

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  intercept ~                                                           
    x1                0.608    0.059   10.275    0.000    0.439    0.451
    x2                0.604    0.062    9.776    0.000    0.436    0.419
  slope ~                                                               
    x1                0.262    0.029    8.968    0.000    0.341    0.351
    x2                0.522    0.032   16.301    0.000    0.679    0.653
  t1 ~                                                                  
    c1                0.143    0.045    3.198    0.001    0.143    0.089
  t2 ~                                                                  
    c2                0.289    0.047    6.215    0.000    0.289    0.131
  t3 ~                                                                  
    c3                0.328    0.047    7.011    0.000    0.328    0.112
  t4 ~                                                                  
    c4                0.330    0.057    5.814    0.000    0.330    0.091

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
 .intercept ~~                                                          
   .slope             0.075    0.040    1.890    0.059    0.152    0.152
  x1 ~~                                                                 
    x2                0.153    0.049    3.129    0.002    0.153    0.155
    c1               -0.038    0.050   -0.760    0.447   -0.038   -0.037
    c2                0.026    0.048    0.547    0.585    0.026    0.027
    c3                0.033    0.049    0.674    0.501    0.033    0.035
    c4               -0.025    0.044   -0.560    0.575   -0.025   -0.026
  x2 ~~                                                                 
    c1               -0.019    0.050   -0.377    0.706   -0.019   -0.020
    c2               -0.007    0.044   -0.167    0.867   -0.007   -0.008
    c3                0.145    0.048    3.055    0.002    0.145    0.162
    c4               -0.102    0.043   -2.371    0.018   -0.102   -0.115
  c1 ~~                                                                 
    c2                0.080    0.045    1.789    0.074    0.080    0.085
    c3               -0.030    0.050   -0.596    0.551   -0.030   -0.033
    c4                0.128    0.048    2.669    0.008    0.128    0.140
  c2 ~~                                                                 
    c3                0.001    0.042    0.030    0.976    0.001    0.001
    c4                0.032    0.044    0.729    0.466    0.032    0.036
  c3 ~~                                                                 
    c4                0.035    0.044    0.796    0.426    0.035    0.041

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .t1                0.000                               0.000    0.000
   .t2                0.000                               0.000    0.000
   .t3                0.000                               0.000    0.000
   .t4                0.000                               0.000    0.000
   .intercept         0.580    0.061    9.501    0.000    0.419    0.419
   .slope             0.958    0.030   32.177    0.000    1.247    1.247
    x1               -0.092    0.051   -1.793    0.073   -0.092   -0.090
    x2                0.138    0.048    2.878    0.004    0.138    0.144
    c1                0.008    0.049    0.158    0.874    0.008    0.008
    c2                0.029    0.047    0.610    0.542    0.029    0.031
    c3                0.068    0.047    1.449    0.147    0.068    0.072
    c4               -0.018    0.046   -0.390    0.696   -0.018   -0.020

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .t1                0.580    0.091    6.386    0.000    0.580    0.231
   .t2                0.596    0.056   10.627    0.000    0.596    0.135
   .t3                0.481    0.051    9.434    0.000    0.481    0.064
   .t4                0.535    0.094    5.709    0.000    0.535    0.047
   .intercept         1.079    0.108    9.996    0.000    0.562    0.562
   .slope             0.224    0.027    8.373    0.000    0.379    0.379
    x1                1.056    0.068   15.511    0.000    1.056    1.000
    x2                0.924    0.065   14.153    0.000    0.924    1.000
    c1                0.972    0.063   15.321    0.000    0.972    1.000
    c2                0.899    0.062   14.432    0.000    0.899    1.000
    c3                0.872    0.067   13.018    0.000    0.872    1.000
    c4                0.851    0.057   15.001    0.000    0.851    1.000

R-Square:
                   Estimate
    t1                0.769
    t2                0.865
    t3                0.936
    t4                0.953
    intercept         0.438
    slope             0.621

7.4 Estimates of Model Fit

fitMeasures(
  lgcm1_fit,
  fit.measures = c(
    "chisq", "df", "pvalue",
    "chisq.scaled", "df.scaled", "pvalue.scaled",
    "chisq.scaling.factor",
    "baseline.chisq","baseline.df","baseline.pvalue",
    "rmsea", "cfi", "tli", "srmr",
    "rmsea.robust", "cfi.robust", "tli.robust"))
Warning: lavaan->lav_partable_check():  
   automatically added intercepts are set to zero: ("x1", "x2", "c1", "c2", 
   "c3", "c4")
Warning: lavaan->lav_partable_check():  
   automatically added intercepts are set to zero: ("x1", "x2", "c1", "c2", 
   "c3", "c4")
               chisq                   df               pvalue 
              40.774               27.000                0.043 
        chisq.scaled            df.scaled        pvalue.scaled 
              40.982               27.000                0.041 
chisq.scaling.factor       baseline.chisq          baseline.df 
               0.995             2345.885               30.000 
     baseline.pvalue                rmsea                  cfi 
               0.000                0.036                0.994 
                 tli                 srmr         rmsea.robust 
               0.993                0.030                0.040 
          cfi.robust           tli.robust 
               0.992                0.992 

7.5 Residuals of Observed vs. Model-Implied Correlation Matrix

residuals(
  lgcm1_fit,
  type = "cor")
$type
[1] "cor.bollen"

$cov
       t1     t2     t3     t4     x1     x2     c1     c2     c3     c4
t1  0.000                                                               
t2  0.010  0.000                                                        
t3 -0.013 -0.001  0.000                                                 
t4  0.012  0.002  0.002  0.000                                          
x1  0.007  0.004  0.002  0.010  0.000                                   
x2 -0.006  0.005  0.002 -0.002  0.015  0.000                            
c1  0.006  0.018  0.001  0.056  0.001 -0.001  0.000                     
c2  0.006 -0.005 -0.007 -0.005  0.003 -0.004  0.000  0.000              
c3  0.046  0.018  0.030  0.030  0.007 -0.008 -0.001 -0.002  0.000       
c4  0.038  0.027  0.001  0.006 -0.002  0.002  0.000  0.001  0.002  0.000

$mean
    t1     t2     t3     t4     x1     x2     c1     c2     c3     c4 
 0.009  0.064  0.036  0.055 -0.090  0.144  0.008  0.031  0.072 -0.020 

7.6 Modification Indices

modificationindices(
  lgcm1_fit,
  sort. = TRUE)

7.7 Internal Consistency Reliability

compRelSEM(lgcm1_fit)
named numeric(0)

7.8 Path Diagram

semPaths(
  lgcm1_fit,
  what = "Std.all",
  layout = "tree2",
  edge.label.cex = 1.5)

7.9 Plot Trajectories

7.9.1 Protoypical Growth Curve

Calculated from intercept and slope parameters:

lgcm1_intercept <- coef(lgcm1_fit)["intercept~1"]
lgcm1_slope <- coef(lgcm1_fit)["slope~1"]

ggplot() +
  xlab("Timepoint") +
  ylab("Score") +
  scale_x_continuous(
    limits = c(0, 3),
    labels = 1:4) +
  scale_y_continuous(
    limits = c(0, 5)) +
  geom_abline(
    mapping = aes(
      slope = lgcm1_slope,
      intercept = lgcm1_intercept))

Calculated manually:

timepoints <- 4

newData <- expand.grid(
  time = c(1, 4)
)

newData$predictedValue <- NA
newData$predictedValue[which(newData$time == 1)] <- lgcm1_intercept
newData$predictedValue[which(newData$time == 4)] <- lgcm1_intercept + (timepoints - 1)*lgcm1_slope

ggplot(
  data = newData,
  mapping = aes(x = time, y = predictedValue)) +
  xlab("Timepoint") +
  ylab("Score") +
  scale_y_continuous(
    limits = c(0, 5)) +
  geom_line()

7.9.2 Individuals’ Growth Curves

Calculated from intercept and slope parameters:

newData <- as.data.frame(predict(lgcm1_fit))
newData$id <- row.names(newData)

ggplot(
  data = newData) +
  xlab("Timepoint") +
  ylab("Score") +
  scale_x_continuous(
    limits = c(0, 3),
    labels = 1:4) +
  scale_y_continuous(
    limits = c(-10, 20)) +
  geom_abline(
    mapping = aes(
      slope = slope,
      intercept = intercept))

Calculated manually:

newData$t1 <- newData$intercept
newData$t4 <- newData$intercept + (timepoints - 1)*newData$slope

newData2 <- pivot_longer(
  newData,
  cols = c(t1, t4)) %>% 
  select(-intercept, -slope)

newData2$time <- NA
newData2$time[which(newData2$name == "t1")] <- 1
newData2$time[which(newData2$name == "t4")] <- 4

ggplot(
  data = newData2,
  mapping = aes(x = time, y = value, group = factor(id))) +
  xlab("Timepoint") +
  ylab("Score") +
  scale_y_continuous(
    limits = c(-10, 20)) +
  geom_line()

7.9.3 Individuals’ Trajectories Overlaid with Prototypical Trajectory

newData <- as.data.frame(predict(lgcm1_fit))
newData$id <- row.names(newData)

ggplot(
  data = newData) +
  xlab("Timepoint") +
  ylab("Score") +
  scale_x_continuous(
    limits = c(0, 3),
    labels = 1:4) +
  scale_y_continuous(
    limits = c(-10, 20)) +
  geom_abline(
    mapping = aes(
      slope = slope,
      intercept = intercept)) +
  geom_abline(
    mapping = aes(
      slope = lgcm1_slope,
      intercept = lgcm1_intercept),
    color = "blue",
    linewidth = 2)

8 Latent Change Score Model

8.1 Model Syntax

bivariateLCSM_syntax <- specify_bi_lcsm(
  timepoints = 10,
  var_x = "x",
  model_x = list(
    alpha_constant = TRUE, # alpha = intercept (constant change factor)
    beta = TRUE, # beta = proportional change factor (latent true score predicting its change score)
    phi = TRUE), # phi = autoregression of change scores
  var_y = "y",
  model_y = list(
    alpha_constant = TRUE, # alpha = intercept (constant change factor)
    beta = TRUE, # beta = proportional change factor (latent true score predicting its change score)
    phi = TRUE), # phi = autoregression of change scores
  coupling = list(
    delta_lag_xy = TRUE,
    delta_lag_yx = TRUE),
  change_letter_x = "g",
  change_letter_y = "j")

cat(bivariateLCSM_syntax)
# # # # # # # # # # # # # # # # # # # # #
# Specify parameters for construct x ----
# # # # # # # # # # # # # # # # # # # # #
# Specify latent true scores 
lx1 =~ 1 * x1 
lx2 =~ 1 * x2 
lx3 =~ 1 * x3 
lx4 =~ 1 * x4 
lx5 =~ 1 * x5 
lx6 =~ 1 * x6 
lx7 =~ 1 * x7 
lx8 =~ 1 * x8 
lx9 =~ 1 * x9 
lx10 =~ 1 * x10 
# Specify mean of latent true scores 
lx1 ~ gamma_lx1 * 1 
lx2 ~ 0 * 1 
lx3 ~ 0 * 1 
lx4 ~ 0 * 1 
lx5 ~ 0 * 1 
lx6 ~ 0 * 1 
lx7 ~ 0 * 1 
lx8 ~ 0 * 1 
lx9 ~ 0 * 1 
lx10 ~ 0 * 1 
# Specify variance of latent true scores 
lx1 ~~ sigma2_lx1 * lx1 
lx2 ~~ 0 * lx2 
lx3 ~~ 0 * lx3 
lx4 ~~ 0 * lx4 
lx5 ~~ 0 * lx5 
lx6 ~~ 0 * lx6 
lx7 ~~ 0 * lx7 
lx8 ~~ 0 * lx8 
lx9 ~~ 0 * lx9 
lx10 ~~ 0 * lx10 
# Specify intercept of obseved scores 
x1 ~ 0 * 1 
x2 ~ 0 * 1 
x3 ~ 0 * 1 
x4 ~ 0 * 1 
x5 ~ 0 * 1 
x6 ~ 0 * 1 
x7 ~ 0 * 1 
x8 ~ 0 * 1 
x9 ~ 0 * 1 
x10 ~ 0 * 1 
# Specify variance of observed scores 
x1 ~~ sigma2_ux * x1 
x2 ~~ sigma2_ux * x2 
x3 ~~ sigma2_ux * x3 
x4 ~~ sigma2_ux * x4 
x5 ~~ sigma2_ux * x5 
x6 ~~ sigma2_ux * x6 
x7 ~~ sigma2_ux * x7 
x8 ~~ sigma2_ux * x8 
x9 ~~ sigma2_ux * x9 
x10 ~~ sigma2_ux * x10 
# Specify autoregressions of latent variables 
lx2 ~ 1 * lx1 
lx3 ~ 1 * lx2 
lx4 ~ 1 * lx3 
lx5 ~ 1 * lx4 
lx6 ~ 1 * lx5 
lx7 ~ 1 * lx6 
lx8 ~ 1 * lx7 
lx9 ~ 1 * lx8 
lx10 ~ 1 * lx9 
# Specify latent change scores 
dx2 =~ 1 * lx2 
dx3 =~ 1 * lx3 
dx4 =~ 1 * lx4 
dx5 =~ 1 * lx5 
dx6 =~ 1 * lx6 
dx7 =~ 1 * lx7 
dx8 =~ 1 * lx8 
dx9 =~ 1 * lx9 
dx10 =~ 1 * lx10 
# Specify latent change scores means 
dx2 ~ 0 * 1 
dx3 ~ 0 * 1 
dx4 ~ 0 * 1 
dx5 ~ 0 * 1 
dx6 ~ 0 * 1 
dx7 ~ 0 * 1 
dx8 ~ 0 * 1 
dx9 ~ 0 * 1 
dx10 ~ 0 * 1 
# Specify latent change scores variances 
dx2 ~~ 0 * dx2 
dx3 ~~ 0 * dx3 
dx4 ~~ 0 * dx4 
dx5 ~~ 0 * dx5 
dx6 ~~ 0 * dx6 
dx7 ~~ 0 * dx7 
dx8 ~~ 0 * dx8 
dx9 ~~ 0 * dx9 
dx10 ~~ 0 * dx10 
# Specify constant change factor 
g2 =~ 1 * dx2 + 1 * dx3 + 1 * dx4 + 1 * dx5 + 1 * dx6 + 1 * dx7 + 1 * dx8 + 1 * dx9 + 1 * dx10 
# Specify constant change factor mean 
g2 ~ alpha_g2 * 1 
# Specify constant change factor variance 
g2 ~~ sigma2_g2 * g2 
# Specify constant change factor covariance with the initial true score 
g2 ~~ sigma_g2lx1 * lx1
# Specify proportional change component 
dx2 ~ beta_x * lx1 
dx3 ~ beta_x * lx2 
dx4 ~ beta_x * lx3 
dx5 ~ beta_x * lx4 
dx6 ~ beta_x * lx5 
dx7 ~ beta_x * lx6 
dx8 ~ beta_x * lx7 
dx9 ~ beta_x * lx8 
dx10 ~ beta_x * lx9 
# Specify autoregression of change score 
dx3 ~ phi_x * dx2 
dx4 ~ phi_x * dx3 
dx5 ~ phi_x * dx4 
dx6 ~ phi_x * dx5 
dx7 ~ phi_x * dx6 
dx8 ~ phi_x * dx7 
dx9 ~ phi_x * dx8 
dx10 ~ phi_x * dx9 
# # # # # # # # # # # # # # # # # # # # #
# Specify parameters for construct y ----
# # # # # # # # # # # # # # # # # # # # #
# Specify latent true scores 
ly1 =~ 1 * y1 
ly2 =~ 1 * y2 
ly3 =~ 1 * y3 
ly4 =~ 1 * y4 
ly5 =~ 1 * y5 
ly6 =~ 1 * y6 
ly7 =~ 1 * y7 
ly8 =~ 1 * y8 
ly9 =~ 1 * y9 
ly10 =~ 1 * y10 
# Specify mean of latent true scores 
ly1 ~ gamma_ly1 * 1 
ly2 ~ 0 * 1 
ly3 ~ 0 * 1 
ly4 ~ 0 * 1 
ly5 ~ 0 * 1 
ly6 ~ 0 * 1 
ly7 ~ 0 * 1 
ly8 ~ 0 * 1 
ly9 ~ 0 * 1 
ly10 ~ 0 * 1 
# Specify variance of latent true scores 
ly1 ~~ sigma2_ly1 * ly1 
ly2 ~~ 0 * ly2 
ly3 ~~ 0 * ly3 
ly4 ~~ 0 * ly4 
ly5 ~~ 0 * ly5 
ly6 ~~ 0 * ly6 
ly7 ~~ 0 * ly7 
ly8 ~~ 0 * ly8 
ly9 ~~ 0 * ly9 
ly10 ~~ 0 * ly10 
# Specify intercept of obseved scores 
y1 ~ 0 * 1 
y2 ~ 0 * 1 
y3 ~ 0 * 1 
y4 ~ 0 * 1 
y5 ~ 0 * 1 
y6 ~ 0 * 1 
y7 ~ 0 * 1 
y8 ~ 0 * 1 
y9 ~ 0 * 1 
y10 ~ 0 * 1 
# Specify variance of observed scores 
y1 ~~ sigma2_uy * y1 
y2 ~~ sigma2_uy * y2 
y3 ~~ sigma2_uy * y3 
y4 ~~ sigma2_uy * y4 
y5 ~~ sigma2_uy * y5 
y6 ~~ sigma2_uy * y6 
y7 ~~ sigma2_uy * y7 
y8 ~~ sigma2_uy * y8 
y9 ~~ sigma2_uy * y9 
y10 ~~ sigma2_uy * y10 
# Specify autoregressions of latent variables 
ly2 ~ 1 * ly1 
ly3 ~ 1 * ly2 
ly4 ~ 1 * ly3 
ly5 ~ 1 * ly4 
ly6 ~ 1 * ly5 
ly7 ~ 1 * ly6 
ly8 ~ 1 * ly7 
ly9 ~ 1 * ly8 
ly10 ~ 1 * ly9 
# Specify latent change scores 
dy2 =~ 1 * ly2 
dy3 =~ 1 * ly3 
dy4 =~ 1 * ly4 
dy5 =~ 1 * ly5 
dy6 =~ 1 * ly6 
dy7 =~ 1 * ly7 
dy8 =~ 1 * ly8 
dy9 =~ 1 * ly9 
dy10 =~ 1 * ly10 
# Specify latent change scores means 
dy2 ~ 0 * 1 
dy3 ~ 0 * 1 
dy4 ~ 0 * 1 
dy5 ~ 0 * 1 
dy6 ~ 0 * 1 
dy7 ~ 0 * 1 
dy8 ~ 0 * 1 
dy9 ~ 0 * 1 
dy10 ~ 0 * 1 
# Specify latent change scores variances 
dy2 ~~ 0 * dy2 
dy3 ~~ 0 * dy3 
dy4 ~~ 0 * dy4 
dy5 ~~ 0 * dy5 
dy6 ~~ 0 * dy6 
dy7 ~~ 0 * dy7 
dy8 ~~ 0 * dy8 
dy9 ~~ 0 * dy9 
dy10 ~~ 0 * dy10 
# Specify constant change factor 
j2 =~ 1 * dy2 + 1 * dy3 + 1 * dy4 + 1 * dy5 + 1 * dy6 + 1 * dy7 + 1 * dy8 + 1 * dy9 + 1 * dy10 
# Specify constant change factor mean 
j2 ~ alpha_j2 * 1 
# Specify constant change factor variance 
j2 ~~ sigma2_j2 * j2 
# Specify constant change factor covariance with the initial true score 
j2 ~~ sigma_j2ly1 * ly1
# Specify proportional change component 
dy2 ~ beta_y * ly1 
dy3 ~ beta_y * ly2 
dy4 ~ beta_y * ly3 
dy5 ~ beta_y * ly4 
dy6 ~ beta_y * ly5 
dy7 ~ beta_y * ly6 
dy8 ~ beta_y * ly7 
dy9 ~ beta_y * ly8 
dy10 ~ beta_y * ly9 
# Specify autoregression of change score 
dy3 ~ phi_y * dy2 
dy4 ~ phi_y * dy3 
dy5 ~ phi_y * dy4 
dy6 ~ phi_y * dy5 
dy7 ~ phi_y * dy6 
dy8 ~ phi_y * dy7 
dy9 ~ phi_y * dy8 
dy10 ~ phi_y * dy9 
# Specify residual covariances 
x1 ~~ sigma_su * y1 
x2 ~~ sigma_su * y2 
x3 ~~ sigma_su * y3 
x4 ~~ sigma_su * y4 
x5 ~~ sigma_su * y5 
x6 ~~ sigma_su * y6 
x7 ~~ sigma_su * y7 
x8 ~~ sigma_su * y8 
x9 ~~ sigma_su * y9 
x10 ~~ sigma_su * y10 
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Specify covariances betweeen specified change components (alpha) and intercepts (initial latent true scores lx1 and ly1) ----
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Specify covariance of intercepts 
lx1 ~~ sigma_ly1lx1 * ly1 
# Specify covariance of constant change and intercept between constructs 
ly1 ~~ sigma_g2ly1 * g2 
# Specify covariance of constant change and intercept between constructs 
lx1 ~~ sigma_j2lx1 * j2 
# Specify covariance of constant change factors between constructs 
g2 ~~ sigma_j2g2 * j2 
# # # # # # # # # # # # # # # # # # # # # # # # # # #
# Specify between-construct coupling parameters ----
# # # # # # # # # # # # # # # # # # # # # # # # # # #
# Change score x (t) is determined by true score y (t-1)  
dx2 ~ delta_lag_xy * ly1 
dx3 ~ delta_lag_xy * ly2 
dx4 ~ delta_lag_xy * ly3 
dx5 ~ delta_lag_xy * ly4 
dx6 ~ delta_lag_xy * ly5 
dx7 ~ delta_lag_xy * ly6 
dx8 ~ delta_lag_xy * ly7 
dx9 ~ delta_lag_xy * ly8 
dx10 ~ delta_lag_xy * ly9 
# Change score y (t) is determined by true score x (t-1)  
dy2 ~ delta_lag_yx * lx1 
dy3 ~ delta_lag_yx * lx2 
dy4 ~ delta_lag_yx * lx3 
dy5 ~ delta_lag_yx * lx4 
dy6 ~ delta_lag_yx * lx5 
dy7 ~ delta_lag_yx * lx6 
dy8 ~ delta_lag_yx * lx7 
dy9 ~ delta_lag_yx * lx8 
dy10 ~ delta_lag_yx * lx9 

8.2 Fit the Model

bivariateLCSM_fit <- fit_bi_lcsm(
  data = data_bi_lcsm,
  var_x = names(data_bi_lcsm)[2:4],
  var_y = names(data_bi_lcsm)[12:14],
  model_x = list(
    alpha_constant = TRUE, # alpha = intercept (constant change factor)
    beta = TRUE, # beta = proportional change factor (latent true score predicting its change score)
    phi = FALSE), # phi = autoregression of change scores
  model_y = list(
    alpha_constant = TRUE, # alpha = intercept (constant change factor)
    beta = TRUE, # beta = proportional change factor (latent true score predicting its change score)
    phi = TRUE), # phi = autoregression of change scores
  coupling = list(
    delta_lag_xy = TRUE,
    xi_lag_yx = TRUE),
  fixed.x = FALSE
  )
Warning: lavaan->lav_model_vcov():  
   The variance-covariance matrix of the estimated parameters (vcov) does not 
   appear to be positive definite! The smallest eigenvalue (= 9.893222e-18) 
   is close to zero. This may be a symptom that the model is not identified.

8.3 Summary Output

summary(
  bivariateLCSM_fit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 137 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        31
  Number of equality constraints                     9

  Number of observations                           500
  Number of missing patterns                        23

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 6.870       5.971
  Degrees of freedom                                 5           5
  P-value (Chi-square)                           0.230       0.309
  Scaling correction factor                                  1.151
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1435.712    1483.655
  Degrees of freedom                                15          15
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.968

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.999       0.999
  Tucker-Lewis Index (TLI)                       0.996       0.998
                                                                  
  Robust Comparative Fit Index (CFI)                         0.999
  Robust Tucker-Lewis Index (TLI)                            0.998

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -2973.817   -2973.817
  Scaling correction factor                                  0.660
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -2970.382   -2970.382
  Scaling correction factor                                  0.971
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                5991.634    5991.634
  Bayesian (BIC)                              6084.355    6084.355
  Sample-size adjusted Bayesian (SABIC)       6014.526    6014.526

Root Mean Square Error of Approximation:

  RMSEA                                          0.027       0.020
  90 Percent confidence interval - lower         0.000       0.000
  90 Percent confidence interval - upper         0.072       0.065
  P-value H_0: RMSEA <= 0.050                    0.751       0.835
  P-value H_0: RMSEA >= 0.080                    0.023       0.009
                                                                  
  Robust RMSEA                                               0.022
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.078
  P-value H_0: Robust RMSEA <= 0.050                         0.731
  P-value H_0: Robust RMSEA >= 0.080                         0.044

Standardized Root Mean Square Residual:

  SRMR                                           0.031       0.031

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  lx1 =~                                                                
    x1                1.000                               0.719    0.867
  lx2 =~                                                                
    x2                1.000                               1.069    0.933
  lx3 =~                                                                
    x3                1.000                               1.559    0.967
  dx2 =~                                                                
    lx2               1.000                               0.600    0.600
  dx3 =~                                                                
    lx3               1.000                               0.374    0.374
  g2 =~                                                                 
    dx2               1.000                               1.018    1.018
    dx3               1.000                               1.119    1.119
  ly1 =~                                                                
    y1                1.000                               0.485    0.755
  ly2 =~                                                                
    y2                1.000                               0.506    0.769
  ly3 =~                                                                
    y3                1.000                               0.756    0.874
  dy2 =~                                                                
    ly2               1.000                               0.619    0.619
  dy3 =~                                                                
    ly3               1.000                               0.510    0.510
  j2 =~                                                                 
    dy2               1.000                               1.452    1.452
    dy3               1.000                               1.181    1.181

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  lx2 ~                                                                 
    lx1               1.000                               0.673    0.673
  lx3 ~                                                                 
    lx2               1.000                               0.685    0.685
  dx2 ~                                                                 
    lx1     (bt_x)   -0.090    0.064   -1.409    0.159   -0.101   -0.101
  dx3 ~                                                                 
    lx2     (bt_x)   -0.090    0.064   -1.409    0.159   -0.166   -0.166
  ly2 ~                                                                 
    ly1               1.000                               0.958    0.958
  ly3 ~                                                                 
    ly2               1.000                               0.669    0.669
  dy2 ~                                                                 
    ly1     (bt_y)    0.536    0.336    1.596    0.110    0.830    0.830
  dy3 ~                                                                 
    ly2     (bt_y)    0.536    0.336    1.596    0.110    0.705    0.705
    dy2     (ph_y)   -0.442    0.359   -1.229    0.219   -0.359   -0.359
  dx2 ~                                                                 
    ly1     (dl__)    0.055    0.109    0.506    0.613    0.042    0.042
  dx3 ~                                                                 
    ly2     (dl__)    0.055    0.109    0.506    0.613    0.048    0.048
  dy3 ~                                                                 
    dx2     (x_l_)    0.269    0.080    3.370    0.001    0.448    0.448

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  lx1 ~~                                                                
    g2 (sgm_g2lx1)    0.143    0.030    4.761    0.000    0.304    0.304
  ly1 ~~                                                                
    j2 (sgm_j2ly1)   -0.165    0.081   -2.019    0.044   -0.746   -0.746
 .x1 ~~                                                                 
   .y1      (sgm_)    0.011    0.009    1.275    0.202    0.011    0.063
 .x2 ~~                                                                 
   .y2      (sgm_)    0.011    0.009    1.275    0.202    0.011    0.063
 .x3 ~~                                                                 
   .y3      (sgm_)    0.011    0.009    1.275    0.202    0.011    0.063
  lx1 ~~                                                                
    l1      (s_11)    0.196    0.026    7.639    0.000    0.562    0.562
  g2 ~~                                                                 
    l1 (sgm_g2ly1)    0.070    0.025    2.758    0.006    0.222    0.222
  lx1 ~~                                                                
    j2 (sgm_j2lx1)   -0.056    0.058   -0.968    0.333   -0.173   -0.173
  g2 ~~                                                                 
    j2      (s_22)   -0.029    0.041   -0.711    0.477   -0.099   -0.099

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    lx1  (gmm_lx1)   21.079    0.038  559.652    0.000   29.307   29.307
   .lx2               0.000                               0.000    0.000
   .lx3               0.000                               0.000    0.000
   .x1                0.000                               0.000    0.000
   .x2                0.000                               0.000    0.000
   .x3                0.000                               0.000    0.000
   .dx2               0.000                               0.000    0.000
   .dx3               0.000                               0.000    0.000
    g2   (alph_g2)   -0.250    0.856   -0.292    0.770   -0.383   -0.383
    ly1  (gmm_ly1)    5.027    0.030  167.731    0.000   10.373   10.373
   .ly2               0.000                               0.000    0.000
   .ly3               0.000                               0.000    0.000
   .y1                0.000                               0.000    0.000
   .y2                0.000                               0.000    0.000
   .y3                0.000                               0.000    0.000
   .dy2               0.000                               0.000    0.000
   .dy3               0.000                               0.000    0.000
    j2   (alph_j2)   -3.891    1.341   -2.902    0.004   -8.551   -8.551

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    lx1 (sgm2_lx1)    0.517    0.042   12.414    0.000    1.000    1.000
   .lx2               0.000                               0.000    0.000
   .lx3               0.000                               0.000    0.000
   .x1    (sgm2_x)    0.171    0.011   15.607    0.000    0.171    0.248
   .x2    (sgm2_x)    0.171    0.011   15.607    0.000    0.171    0.130
   .x3    (sgm2_x)    0.171    0.011   15.607    0.000    0.171    0.066
   .dx2               0.000                               0.000    0.000
   .dx3               0.000                               0.000    0.000
    g2   (sgm2_g2)    0.426    0.045    9.376    0.000    1.000    1.000
    ly1 (sgm2_ly1)    0.235    0.028    8.532    0.000    1.000    1.000
   .ly2               0.000                               0.000    0.000
   .ly3               0.000                               0.000    0.000
   .y1    (sgm2_y)    0.177    0.012   14.979    0.000    0.177    0.429
   .y2    (sgm2_y)    0.177    0.012   14.979    0.000    0.177    0.408
   .y3    (sgm2_y)    0.177    0.012   14.979    0.000    0.177    0.236
   .dy2               0.000                               0.000    0.000
   .dy3               0.000                               0.000    0.000
    j2   (sgm2_j2)    0.207    0.120    1.722    0.085    1.000    1.000

R-Square:
                   Estimate
    lx2               1.000
    lx3               1.000
    x1                0.752
    x2                0.870
    x3                0.934
    dx2               1.000
    dx3               1.000
    ly2               1.000
    ly3               1.000
    y1                0.571
    y2                0.592
    y3                0.764
    dy2               1.000
    dy3               1.000

8.4 Estimates of Model Fit

fitMeasures(
  bivariateLCSM_fit,
  fit.measures = c(
    "chisq", "df", "pvalue",
    "chisq.scaled", "df.scaled", "pvalue.scaled",
    "chisq.scaling.factor",
    "baseline.chisq","baseline.df","baseline.pvalue",
    "rmsea", "cfi", "tli", "srmr",
    "rmsea.robust", "cfi.robust", "tli.robust"))
               chisq                   df               pvalue 
               6.870                5.000                0.230 
        chisq.scaled            df.scaled        pvalue.scaled 
               5.971                5.000                0.309 
chisq.scaling.factor       baseline.chisq          baseline.df 
               1.151             1435.712               15.000 
     baseline.pvalue                rmsea                  cfi 
               0.000                0.027                0.999 
                 tli                 srmr         rmsea.robust 
               0.996                0.031                0.022 
          cfi.robust           tli.robust 
               0.999                0.998 

8.5 Residuals of Observed vs. Model-Implied Correlation Matrix

residuals(
  bivariateLCSM_fit,
  type = "cor")
$type
[1] "cor.bollen"

$cov
       x1     x2     x3     y1     y2     y3
x1  0.000                                   
x2 -0.002  0.000                            
x3 -0.002  0.001  0.000                     
y1  0.031 -0.017  0.018  0.000              
y2 -0.013 -0.035 -0.004 -0.001  0.000       
y3  0.013  0.000  0.006  0.010 -0.006  0.000

$mean
    x1     x2     x3     y1     y2     y3 
-0.001  0.001  0.000  0.000 -0.004  0.001 

8.6 Modification Indices

modificationindices(
  bivariateLCSM_fit,
  sort. = TRUE)
Warning: lavaan->modificationindices():  
   the modindices() function ignores equality constraints; use lavTestScore() 
   to assess the impact of releasing one or multiple constraints.

8.7 Path Diagram

semPaths(
  bivariateLCSM_fit,
  what = "Std.all",
  layout = "tree2",
  edge.label.cex = 1.5)

plot_lcsm(
  lavaan_object = bivariateLCSM_fit,
  lcsm = "bivariate",
  lavaan_syntax = bivariateLCSM_syntax)

8.8 Plot Trajectories

plot_trajectories(
  data_bi_lcsm,
  id_var = "id",
  var_list = c("y1", "y2", "y3", "y4", "y5",
               "y6", "y7", "y8", "y9", "y10"),
  xlab = "Time",
  ylab = "Y Score",
  connect_missing = FALSE)
Warning: Removed 111 rows containing missing values or values outside the scale range
(`geom_line()`).
Warning: Removed 505 rows containing missing values or values outside the scale range
(`geom_point()`).

9 Cross-Lagged Panel Model

9.1 Model Syntax

clpm_syntax <- '
  # Autoregressive Paths
  t4 ~ t3
  t3 ~ t2
  t2 ~ t1
  
  c4 ~ c3
  c3 ~ c2
  c2 ~ c1
  
  # Concurrent Covariances
  t1 ~~ c1
  t2 ~~ c2
  t3 ~~ c3
  t4 ~~ c4
  
  # Cross-Lagged Paths
  t4 ~ c3
  t3 ~ c2
  t2 ~ c1
  
  c4 ~ t3
  c3 ~ t2
  c2 ~ t1
'

9.2 Fit the Model

clpm_fit <- sem(
  clpm_syntax,
  data = Demo.growth,
  missing = "ML",
  estimator = "MLR",
  meanstructure = TRUE,
  std.lv = TRUE,
  fixed.x = FALSE,
  em.h1.iter.max = 100000)

9.3 Summary Output

summary(
  clpm_fit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 25 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        32

  Number of observations                           400
  Number of missing patterns                         1

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                55.624      54.099
  Degrees of freedom                                12          12
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.028
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1933.670    1953.262
  Degrees of freedom                                28          28
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.990

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.977       0.978
  Tucker-Lewis Index (TLI)                       0.947       0.949
                                                                  
  Robust Comparative Fit Index (CFI)                         0.977
  Robust Tucker-Lewis Index (TLI)                            0.947

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -4885.800   -4885.800
  Scaling correction factor                                  1.001
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -4857.988   -4857.988
  Scaling correction factor                                  1.008
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                9835.601    9835.601
  Bayesian (BIC)                              9963.328    9963.328
  Sample-size adjusted Bayesian (SABIC)       9861.790    9861.790

Root Mean Square Error of Approximation:

  RMSEA                                          0.095       0.094
  90 Percent confidence interval - lower         0.071       0.069
  90 Percent confidence interval - upper         0.121       0.119
  P-value H_0: RMSEA <= 0.050                    0.002       0.002
  P-value H_0: RMSEA >= 0.080                    0.856       0.832
                                                                  
  Robust RMSEA                                               0.095
  90 Percent confidence interval - lower                     0.070
  90 Percent confidence interval - upper                     0.121
  P-value H_0: Robust RMSEA <= 0.050                         0.002
  P-value H_0: Robust RMSEA >= 0.080                         0.849

Standardized Root Mean Square Residual:

  SRMR                                           0.029       0.029

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  t4 ~                                                                  
    t3                1.183    0.023   51.960    0.000    1.183    0.954
  t3 ~                                                                  
    t2                1.135    0.031   36.564    0.000    1.135    0.885
  t2 ~                                                                  
    t1                1.040    0.047   21.910    0.000    1.040    0.773
  c4 ~                                                                  
    c3                0.063    0.051    1.227    0.220    0.063    0.063
  c3 ~                                                                  
    c2               -0.015    0.046   -0.319    0.750   -0.015   -0.015
  c2 ~                                                                  
    c1                0.081    0.046    1.761    0.078    0.081    0.084
  t4 ~                                                                  
    c3               -0.323    0.065   -4.935    0.000   -0.323   -0.089
  t3 ~                                                                  
    c2               -0.336    0.069   -4.838    0.000   -0.336   -0.117
  t2 ~                                                                  
    c1               -0.114    0.065   -1.749    0.080   -0.114   -0.053
  c4 ~                                                                  
    t3               -0.030    0.018   -1.717    0.086   -0.030   -0.089
  c3 ~                                                                  
    t2                0.053    0.022    2.377    0.017    0.053    0.121
  c2 ~                                                                  
    t1                0.009    0.029    0.328    0.743    0.009    0.016

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  t1 ~~                                                                 
    c1                0.114    0.081    1.408    0.159    0.114    0.073
 .t2 ~~                                                                 
   .c2                0.244    0.064    3.798    0.000    0.244    0.191
 .t3 ~~                                                                 
   .c3                0.376    0.072    5.224    0.000    0.376    0.310
 .t4 ~~                                                                 
   .c4                0.268    0.055    4.913    0.000    0.268    0.246

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .t4                0.593    0.083    7.110    0.000    0.593    0.176
   .t3                0.704    0.086    8.145    0.000    0.704    0.259
   .t2                1.056    0.071   14.794    0.000    1.056    0.497
   .c4                0.056    0.067    0.835    0.404    0.056    0.061
   .c3               -0.021    0.060   -0.351    0.725   -0.021   -0.023
   .c2                0.023    0.049    0.465    0.642    0.023    0.024
    t1                0.595    0.079    7.531    0.000    0.595    0.377
    c1                0.008    0.049    0.158    0.874    0.008    0.008

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .t4                1.416    0.092   15.404    0.000    1.416    0.124
   .t3                1.703    0.125   13.598    0.000    1.703    0.230
   .t2                1.825    0.137   13.275    0.000    1.825    0.405
   .c4                0.844    0.056   15.195    0.000    0.844    0.991
   .c3                0.859    0.065   13.252    0.000    0.859    0.986
   .c2                0.892    0.061   14.608    0.000    0.892    0.992
    t1                2.494    0.185   13.450    0.000    2.494    1.000
    c1                0.972    0.063   15.321    0.000    0.972    1.000

R-Square:
                   Estimate
    t4                0.876
    t3                0.770
    t2                0.595
    c4                0.009
    c3                0.014
    c2                0.008

9.4 Estimates of Model Fit

fitMeasures(
  clpm_fit,
  fit.measures = c(
    "chisq", "df", "pvalue",
    "chisq.scaled", "df.scaled", "pvalue.scaled",
    "chisq.scaling.factor",
    "baseline.chisq","baseline.df","baseline.pvalue",
    "rmsea", "cfi", "tli", "srmr",
    "rmsea.robust", "cfi.robust", "tli.robust"))
               chisq                   df               pvalue 
              55.624               12.000                0.000 
        chisq.scaled            df.scaled        pvalue.scaled 
              54.099               12.000                0.000 
chisq.scaling.factor       baseline.chisq          baseline.df 
               1.028             1933.670               28.000 
     baseline.pvalue                rmsea                  cfi 
               0.000                0.095                0.977 
                 tli                 srmr         rmsea.robust 
               0.947                0.029                0.095 
          cfi.robust           tli.robust 
               0.977                0.947 

9.5 Residuals of Observed vs. Model-Implied Correlation Matrix

residuals(
  clpm_fit,
  type = "cor")
$type
[1] "cor.bollen"

$cov
       t4     t3     t2     c4     c3     c2     t1     c1
t4  0.000                                                 
t3  0.000  0.000                                          
t2  0.044  0.000  0.000                                   
c4  0.000  0.000  0.030  0.000                            
c3  0.000  0.000  0.000  0.000  0.000                     
c2  0.005  0.000  0.000  0.036  0.000  0.000              
t1  0.068  0.038  0.000  0.052  0.024  0.000  0.000       
c1  0.048 -0.022  0.000  0.140 -0.032  0.000  0.000  0.000

$mean
t4 t3 t2 c4 c3 c2 t1 c1 
 0  0  0  0  0  0  0  0 

9.6 Modification Indices

modificationindices(
  clpm_fit,
  sort. = TRUE)

9.7 Path Diagram

semPaths(
  clpm_fit,
  what = "Std.all",
  layout = "tree2",
  edge.label.cex = 1.5)

10 Random Intercept Cross-Lagged Panel Model

10.1 Model Syntax

10.1.1 Abbreviated

Adapted from Mulder & Hamaker (2021): https://doi.org/10.1080/10705511.2020.1784738

https://jeroendmulder.github.io/RI-CLPM/lavaan.html (archived at https://perma.cc/2K6A-WUJQ)

riclpm1_syntax <- '
  # Random Intercepts
  t =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
  c =~ 1*c1 + 1*c2 + 1*c3 + 1*c4
  
  # Create Within-Person Centered Variables
  wt1 =~ 1*t1
  wt2 =~ 1*t2
  wt3 =~ 1*t3
  wt4 =~ 1*t4
  
  wc1 =~ 1*c1
  wc2 =~ 1*c2
  wc3 =~ 1*c3
  wc4 =~ 1*c4
  
  # Autoregressive Paths
  wt4 ~ wt3
  wt3 ~ wt2
  wt2 ~ wt1
  
  wc4 ~ wc3
  wc3 ~ wc2
  wc2 ~ wc1
  
  # Concurrent Covariances
  wt1 ~~ wc1
  wt2 ~~ wc2
  wt3 ~~ wc3
  wt4 ~~ wc4
  
  # Cross-Lagged Paths
  wt4 ~ wc3
  wt3 ~ wc2
  wt2 ~ wc1
  
  wc4 ~ wt3
  wc3 ~ wt2
  wc2 ~ wt1
  
  # Variance and Covariance of Random Intercepts
  t ~~ t
  c ~~ c
  t ~~ c
  
  # Variances of Within-Person Centered Variables
  wt1 ~~ wt1
  wt2 ~~ wt2
  wt3 ~~ wt3
  wt4 ~~ wt4
  
  wc1 ~~ wc1
  wc2 ~~ wc2
  wc3 ~~ wc3
  wc4 ~~ wc4
'

10.1.2 Full

Adapted from Mund & Nestler (2017): https://osf.io/a4dhk

riclpm2_syntax <- '
  # Random Intercepts
  t =~ 1*t1 + 1*t2 + 1*t3 + 1*t4
  c =~ 1*c1 + 1*c2 + 1*c3 + 1*c4
  
  # Create Within-Person Centered Variables
  wt1 =~ 1*t1
  wt2 =~ 1*t2
  wt3 =~ 1*t3
  wt4 =~ 1*t4
  
  wc1 =~ 1*c1
  wc2 =~ 1*c2
  wc3 =~ 1*c3
  wc4 =~ 1*c4
  
  # Autoregressive Paths
  wt4 ~ wt3
  wt3 ~ wt2
  wt2 ~ wt1
  
  wc4 ~ wc3
  wc3 ~ wc2
  wc2 ~ wc1
  
  # Concurrent Covariances
  wt1 ~~ wc1
  wt2 ~~ wc2
  wt3 ~~ wc3
  wt4 ~~ wc4
  
  # Cross-Lagged Paths
  wt4 ~ wc3
  wt3 ~ wc2
  wt2 ~ wc1
  
  wc4 ~ wt3
  wc3 ~ wt2
  wc2 ~ wt1
  
  # Variance and Covariance of Random Intercepts
  t ~~ t
  c ~~ c
  t ~~ c
  
  # Variances of Within-Person Centered Variables
  wt1 ~~ wt1
  wt2 ~~ wt2
  wt3 ~~ wt3
  wt4 ~~ wt4
  
  wc1 ~~ wc1
  wc2 ~~ wc2
  wc3 ~~ wc3
  wc4 ~~ wc4
  
  # Fix Error Variances of Observed Variables to Zero
  t1 ~~ 0*t1
  t2 ~~ 0*t2
  t3 ~~ 0*t3
  t4 ~~ 0*t4
  
  c1 ~~ 0*c1
  c2 ~~ 0*c2
  c3 ~~ 0*c3
  c4 ~~ 0*c4
  
  # Fix the Covariances Between the Random Intercepts and the Latents at T1 to Zero
  wt1 ~~ 0*t
  wt1 ~~ 0*c
  
  wc1 ~~ 0*t
  wc1 ~~ 0*c
  
  # Estimate Observed Intercepts
  t1 ~ 1
  t2 ~ 1
  t3 ~ 1
  t4 ~ 1
  
  c1 ~ 1
  c2 ~ 1
  c3 ~ 1
  c4 ~ 1
  
  # Fix the Means of the Latents to Zero
  wt1 ~ 0*1
  wt2 ~ 0*1
  wt3 ~ 0*1
  wt4 ~ 0*1
  
  wc1 ~ 0*1
  wc2 ~ 0*1
  wc3 ~ 0*1
  wc4 ~ 0*1
  
  t ~ 0*1
  c ~ 0*1
'

10.2 Fit the Model

10.2.1 Abbreviated

riclpm1_fit <- lavaan(
  riclpm1_syntax,
  data = Demo.growth,
  missing = "ML",
  estimator = "MLR",
  meanstructure = TRUE,
  int.ov.free = TRUE,
  fixed.x = FALSE,
  em.h1.iter.max = 100000)
Warning: lavaan->lav_object_post_check():  
   some estimated lv variances are negative

10.2.2 Full

riclpm2_fit <- sem(
  riclpm2_syntax,
  data = Demo.growth,
  missing = "ML",
  estimator = "MLR",
  fixed.x = FALSE,
  em.h1.iter.max = 100000)
Warning: lavaan->lav_object_post_check():  
   some estimated lv variances are negative

10.3 Summary Output

10.3.1 Abbreviated

summary(
  riclpm1_fit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 63 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        35

  Number of observations                           400
  Number of missing patterns                         1

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                39.156      38.001
  Degrees of freedom                                 9           9
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.030
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1933.670    1953.262
  Degrees of freedom                                28          28
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.990

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.984       0.985
  Tucker-Lewis Index (TLI)                       0.951       0.953
                                                                  
  Robust Comparative Fit Index (CFI)                         0.984
  Robust Tucker-Lewis Index (TLI)                            0.951

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -4877.566   -4877.566
  Scaling correction factor                                  1.003
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -4857.988   -4857.988
  Scaling correction factor                                  1.008
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                9825.132    9825.132
  Bayesian (BIC)                              9964.833    9964.833
  Sample-size adjusted Bayesian (SABIC)       9853.776    9853.776

Root Mean Square Error of Approximation:

  RMSEA                                          0.092       0.090
  90 Percent confidence interval - lower         0.063       0.062
  90 Percent confidence interval - upper         0.122       0.120
  P-value H_0: RMSEA <= 0.050                    0.009       0.011
  P-value H_0: RMSEA >= 0.080                    0.766       0.737
                                                                  
  Robust RMSEA                                               0.091
  90 Percent confidence interval - lower                     0.062
  90 Percent confidence interval - upper                     0.122
  P-value H_0: Robust RMSEA <= 0.050                         0.011
  P-value H_0: Robust RMSEA >= 0.080                         0.756

Standardized Root Mean Square Residual:

  SRMR                                           0.023       0.023

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  t =~                                                                  
    t1                1.000                                  NA       NA
    t2                1.000                                  NA       NA
    t3                1.000                                  NA       NA
    t4                1.000                                  NA       NA
  c =~                                                                  
    c1                1.000                               0.206    0.209
    c2                1.000                               0.206    0.217
    c3                1.000                               0.206    0.220
    c4                1.000                               0.206    0.224
  wt1 =~                                                                
    t1                1.000                               2.318    1.462
  wt2 =~                                                                
    t2                1.000                               2.695    1.284
  wt3 =~                                                                
    t3                1.000                               3.219    1.175
  wt4 =~                                                                
    t4                1.000                               3.786    1.118
  wc1 =~                                                                
    c1                1.000                               0.965    0.978
  wc2 =~                                                                
    c2                1.000                               0.927    0.976
  wc3 =~                                                                
    c3                1.000                               0.915    0.976
  wc4 =~                                                                
    c4                1.000                               0.894    0.975

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  wt4 ~                                                                 
    wt3               1.126    0.029   38.930    0.000    0.957    0.957
  wt3 ~                                                                 
    wt2               1.093    0.025   43.596    0.000    0.915    0.915
  wt2 ~                                                                 
    wt1               1.005    0.025   40.746    0.000    0.864    0.864
  wc4 ~                                                                 
    wc3               0.004    0.061    0.063    0.950    0.004    0.004
  wc3 ~                                                                 
    wc2              -0.047    0.056   -0.839    0.401   -0.048   -0.048
  wc2 ~                                                                 
    wc1               0.042    0.051    0.816    0.415    0.043    0.043
  wt4 ~                                                                 
    wc3              -0.291    0.076   -3.838    0.000   -0.070   -0.070
  wt3 ~                                                                 
    wc2              -0.326    0.074   -4.413    0.000   -0.094   -0.094
  wt2 ~                                                                 
    wc1              -0.113    0.068   -1.661    0.097   -0.041   -0.041
  wc4 ~                                                                 
    wt3              -0.021    0.020   -1.044    0.296   -0.075   -0.075
  wc3 ~                                                                 
    wt2               0.020    0.023    0.881    0.378    0.059    0.059
  wc2 ~                                                                 
    wt1              -0.010    0.024   -0.420    0.675   -0.025   -0.025

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  wt1 ~~                                                                
    wc1              -0.007    0.136   -0.054    0.957   -0.003   -0.003
 .wt2 ~~                                                                
   .wc2               0.242    0.064    3.775    0.000    0.193    0.193
 .wt3 ~~                                                                
   .wc3               0.385    0.074    5.191    0.000    0.322    0.322
 .wt4 ~~                                                                
   .wc4               0.238    0.058    4.071    0.000    0.219    0.219
  t ~~                                                                  
    c                 0.082    0.107    0.761    0.447    0.235    0.235

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .t1                0.595    0.079    7.531    0.000    0.595    0.375
   .t2                1.673    0.106   15.763    0.000    1.673    0.797
   .t3                2.593    0.136   19.058    0.000    2.593    0.947
   .t4                3.639    0.169   21.572    0.000    3.639    1.074
   .c1                0.008    0.049    0.158    0.874    0.008    0.008
   .c2                0.029    0.047    0.610    0.542    0.029    0.030
   .c3                0.068    0.047    1.449    0.147    0.068    0.072
   .c4               -0.018    0.046   -0.390    0.696   -0.018   -0.020

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    t                -2.861    1.350   -2.119    0.034       NA       NA
    c                 0.042    0.026    1.637    0.102    1.000    1.000
    wt1               5.373    1.412    3.804    0.000    1.000    1.000
   .wt2               1.829    0.138   13.209    0.000    0.252    0.252
   .wt3               1.719    0.127   13.564    0.000    0.166    0.166
   .wt4               1.484    0.097   15.331    0.000    0.103    0.103
    wc1               0.931    0.067   13.826    0.000    1.000    1.000
   .wc2               0.856    0.065   13.256    0.000    0.997    0.997
   .wc3               0.832    0.070   11.817    0.000    0.995    0.995
   .wc4               0.795    0.061   13.110    0.000    0.994    0.994
   .t1                0.000                               0.000    0.000
   .t2                0.000                               0.000    0.000
   .t3                0.000                               0.000    0.000
   .t4                0.000                               0.000    0.000
   .c1                0.000                               0.000    0.000
   .c2                0.000                               0.000    0.000
   .c3                0.000                               0.000    0.000
   .c4                0.000                               0.000    0.000

R-Square:
                   Estimate
    wt2               0.748
    wt3               0.834
    wt4               0.897
    wc2               0.003
    wc3               0.005
    wc4               0.006
    t1                1.000
    t2                1.000
    t3                1.000
    t4                1.000
    c1                1.000
    c2                1.000
    c3                1.000
    c4                1.000

10.3.2 Full

summary(
  riclpm2_fit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 63 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        35

  Number of observations                           400
  Number of missing patterns                         1

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                39.156      38.001
  Degrees of freedom                                 9           9
  P-value (Chi-square)                           0.000       0.000
  Scaling correction factor                                  1.030
    Yuan-Bentler correction (Mplus variant)                       

Model Test Baseline Model:

  Test statistic                              1933.670    1953.262
  Degrees of freedom                                28          28
  P-value                                        0.000       0.000
  Scaling correction factor                                  0.990

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    0.984       0.985
  Tucker-Lewis Index (TLI)                       0.951       0.953
                                                                  
  Robust Comparative Fit Index (CFI)                         0.984
  Robust Tucker-Lewis Index (TLI)                            0.951

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)              -4877.566   -4877.566
  Scaling correction factor                                  1.003
      for the MLR correction                                      
  Loglikelihood unrestricted model (H1)      -4857.988   -4857.988
  Scaling correction factor                                  1.008
      for the MLR correction                                      
                                                                  
  Akaike (AIC)                                9825.132    9825.132
  Bayesian (BIC)                              9964.833    9964.833
  Sample-size adjusted Bayesian (SABIC)       9853.776    9853.776

Root Mean Square Error of Approximation:

  RMSEA                                          0.092       0.090
  90 Percent confidence interval - lower         0.063       0.062
  90 Percent confidence interval - upper         0.122       0.120
  P-value H_0: RMSEA <= 0.050                    0.009       0.011
  P-value H_0: RMSEA >= 0.080                    0.766       0.737
                                                                  
  Robust RMSEA                                               0.091
  90 Percent confidence interval - lower                     0.062
  90 Percent confidence interval - upper                     0.122
  P-value H_0: Robust RMSEA <= 0.050                         0.011
  P-value H_0: Robust RMSEA >= 0.080                         0.756

Standardized Root Mean Square Residual:

  SRMR                                           0.023       0.023

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Latent Variables:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  t =~                                                                  
    t1                1.000                                  NA       NA
    t2                1.000                                  NA       NA
    t3                1.000                                  NA       NA
    t4                1.000                                  NA       NA
  c =~                                                                  
    c1                1.000                               0.206    0.209
    c2                1.000                               0.206    0.217
    c3                1.000                               0.206    0.220
    c4                1.000                               0.206    0.224
  wt1 =~                                                                
    t1                1.000                               2.318    1.462
  wt2 =~                                                                
    t2                1.000                               2.695    1.284
  wt3 =~                                                                
    t3                1.000                               3.219    1.175
  wt4 =~                                                                
    t4                1.000                               3.786    1.118
  wc1 =~                                                                
    c1                1.000                               0.965    0.978
  wc2 =~                                                                
    c2                1.000                               0.927    0.976
  wc3 =~                                                                
    c3                1.000                               0.915    0.976
  wc4 =~                                                                
    c4                1.000                               0.894    0.975

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  wt4 ~                                                                 
    wt3               1.126    0.029   38.930    0.000    0.957    0.957
  wt3 ~                                                                 
    wt2               1.093    0.025   43.596    0.000    0.915    0.915
  wt2 ~                                                                 
    wt1               1.005    0.025   40.746    0.000    0.864    0.864
  wc4 ~                                                                 
    wc3               0.004    0.061    0.063    0.950    0.004    0.004
  wc3 ~                                                                 
    wc2              -0.047    0.056   -0.839    0.401   -0.048   -0.048
  wc2 ~                                                                 
    wc1               0.042    0.051    0.816    0.415    0.043    0.043
  wt4 ~                                                                 
    wc3              -0.291    0.076   -3.838    0.000   -0.070   -0.070
  wt3 ~                                                                 
    wc2              -0.326    0.074   -4.413    0.000   -0.094   -0.094
  wt2 ~                                                                 
    wc1              -0.113    0.068   -1.661    0.097   -0.041   -0.041
  wc4 ~                                                                 
    wt3              -0.021    0.020   -1.044    0.296   -0.075   -0.075
  wc3 ~                                                                 
    wt2               0.020    0.023    0.881    0.378    0.059    0.059
  wc2 ~                                                                 
    wt1              -0.010    0.024   -0.420    0.675   -0.025   -0.025

Covariances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  wt1 ~~                                                                
    wc1              -0.007    0.136   -0.054    0.957   -0.003   -0.003
 .wt2 ~~                                                                
   .wc2               0.242    0.064    3.775    0.000    0.193    0.193
 .wt3 ~~                                                                
   .wc3               0.385    0.074    5.191    0.000    0.322    0.322
 .wt4 ~~                                                                
   .wc4               0.238    0.058    4.071    0.000    0.219    0.219
  t ~~                                                                  
    c                 0.082    0.107    0.761    0.447    0.235    0.235
    wt1               0.000                               0.000    0.000
  c ~~                                                                  
    wt1               0.000                               0.000    0.000
  t ~~                                                                  
    wc1               0.000                               0.000    0.000
  c ~~                                                                  
    wc1               0.000                               0.000    0.000

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .t1                0.595    0.079    7.531    0.000    0.595    0.375
   .t2                1.673    0.106   15.763    0.000    1.673    0.797
   .t3                2.593    0.136   19.058    0.000    2.593    0.947
   .t4                3.639    0.169   21.572    0.000    3.639    1.074
   .c1                0.008    0.049    0.158    0.874    0.008    0.008
   .c2                0.029    0.047    0.610    0.542    0.029    0.030
   .c3                0.068    0.047    1.449    0.147    0.068    0.072
   .c4               -0.018    0.046   -0.390    0.696   -0.018   -0.020
    wt1               0.000                               0.000    0.000
   .wt2               0.000                               0.000    0.000
   .wt3               0.000                               0.000    0.000
   .wt4               0.000                               0.000    0.000
    wc1               0.000                               0.000    0.000
   .wc2               0.000                               0.000    0.000
   .wc3               0.000                               0.000    0.000
   .wc4               0.000                               0.000    0.000
    t                 0.000                                  NA       NA
    c                 0.000                               0.000    0.000

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    t                -2.861    1.350   -2.119    0.034       NA       NA
    c                 0.042    0.026    1.637    0.102    1.000    1.000
    wt1               5.373    1.412    3.804    0.000    1.000    1.000
   .wt2               1.829    0.138   13.209    0.000    0.252    0.252
   .wt3               1.719    0.127   13.564    0.000    0.166    0.166
   .wt4               1.484    0.097   15.331    0.000    0.103    0.103
    wc1               0.931    0.067   13.826    0.000    1.000    1.000
   .wc2               0.856    0.065   13.256    0.000    0.997    0.997
   .wc3               0.832    0.070   11.817    0.000    0.995    0.995
   .wc4               0.795    0.061   13.110    0.000    0.994    0.994
   .t1                0.000                               0.000    0.000
   .t2                0.000                               0.000    0.000
   .t3                0.000                               0.000    0.000
   .t4                0.000                               0.000    0.000
   .c1                0.000                               0.000    0.000
   .c2                0.000                               0.000    0.000
   .c3                0.000                               0.000    0.000
   .c4                0.000                               0.000    0.000

R-Square:
                   Estimate
    wt2               0.748
    wt3               0.834
    wt4               0.897
    wc2               0.003
    wc3               0.005
    wc4               0.006
    t1                1.000
    t2                1.000
    t3                1.000
    t4                1.000
    c1                1.000
    c2                1.000
    c3                1.000
    c4                1.000

10.4 Estimates of Model Fit

fitMeasures(
  riclpm1_fit,
  fit.measures = c(
    "chisq", "df", "pvalue",
    "chisq.scaled", "df.scaled", "pvalue.scaled",
    "chisq.scaling.factor",
    "baseline.chisq","baseline.df","baseline.pvalue",
    "rmsea", "cfi", "tli", "srmr",
    "rmsea.robust", "cfi.robust", "tli.robust"))
               chisq                   df               pvalue 
              39.156                9.000                0.000 
        chisq.scaled            df.scaled        pvalue.scaled 
              38.001                9.000                0.000 
chisq.scaling.factor       baseline.chisq          baseline.df 
               1.030             1933.670               28.000 
     baseline.pvalue                rmsea                  cfi 
               0.000                0.092                0.984 
                 tli                 srmr         rmsea.robust 
               0.951                0.023                0.091 
          cfi.robust           tli.robust 
               0.984                0.951 

10.5 Residuals of Observed vs. Model-Implied Correlation Matrix

residuals(
  riclpm1_fit,
  type = "cor")
$type
[1] "cor.bollen"

$cov
       t1     t2     t3     t4     c1     c2     c3     c4
t1  0.000                                                 
t2  0.007  0.000                                          
t3  0.012 -0.004  0.000                                   
t4  0.005  0.023  0.000  0.000                            
c1  0.025  0.018 -0.009  0.062  0.000                     
c2  0.003  0.000  0.000  0.005 -0.001  0.000              
c3 -0.013  0.008  0.008  0.009 -0.074 -0.005  0.000       
c4  0.026  0.003 -0.020 -0.013  0.090 -0.014  0.001  0.000

$mean
t1 t2 t3 t4 c1 c2 c3 c4 
 0  0  0  0  0  0  0  0 

10.6 Modification Indices

modificationindices(
  riclpm1_fit,
  sort. = TRUE)
Warning in sqrt(var.lhs.value * var.rhs.value): NaNs produced
Warning: lavaan->lav_start_check_cov():  
   starting values imply NaN for a correlation value; variables involved are: 
   t c

10.7 Internal Consistency Reliability

compRelSEM(riclpm1_fit)
     t      c 
-0.544  0.166 

10.8 Path Diagram

semPaths(
  riclpm1_fit,
  what = "Std.all",
  layout = "tree2",
  edge.label.cex = 1.5)
Warning in qgraph::qgraph(Edgelist, labels = nLab, bidirectional = Bidir, :
Non-finite weights are omitted

11 Mediation

11.1 Model Syntax

mediationModel <- '
# direct effect (cPrime)
Y ~ direct*X

# mediator
M ~ a*X
Y ~ b*M

# indirect effect = a*b
indirect := a*b

# total effect (c)
total := direct + indirect
'

11.2 Fit the Model

To get a robust estimate of the indirect effect, we obtain bootstrapped estimates from 1,000 bootstrap draws. Typically, we would obtain bootstrapped estimates from 10,000 bootstrap draws, but this example uses only 1,000 bootstrap draws for a shorter runtime.

mediationFit <- sem(
  mediationModel,
  data = mydata,
  se = "bootstrap",
  bootstrap = 1000, # generally use 10,000 bootstrap draws; this example uses 1,000 for speed
  parallel = "multicore", # parallelization for speed: use "multicore" for Mac/Linux; "snow" for PC
  iseed = 52242, # for reproducibility
  missing = "ML",
  estimator = "ML",
  std.lv = TRUE,
  fixed.x = FALSE)

11.3 Summary Output

summary(
  mediationFit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 4 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                         9

  Number of observations                           100
  Number of missing patterns                         1

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Model Test Baseline Model:

  Test statistic                                79.768
  Degrees of freedom                                 3
  P-value                                        0.000

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000
  Tucker-Lewis Index (TLI)                       1.000
                                                      
  Robust Comparative Fit Index (CFI)             1.000
  Robust Tucker-Lewis Index (TLI)                1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -394.296
  Loglikelihood unrestricted model (H1)       -394.296
                                                      
  Akaike (AIC)                                 806.592
  Bayesian (BIC)                               830.039
  Sample-size adjusted Bayesian (SABIC)        801.614

Root Mean Square Error of Approximation:

  RMSEA                                          0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value H_0: RMSEA <= 0.050                       NA
  P-value H_0: RMSEA >= 0.080                       NA
                                                      
  Robust RMSEA                                   0.000
  90 Percent confidence interval - lower         0.000
  90 Percent confidence interval - upper         0.000
  P-value H_0: Robust RMSEA <= 0.050                NA
  P-value H_0: Robust RMSEA >= 0.080                NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             1000
  Number of successful bootstrap draws            1000

Regressions:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Y ~                                                                   
    X       (drct)   -0.045    0.107   -0.423    0.672   -0.045   -0.038
  M ~                                                                   
    X          (a)    0.568    0.090    6.328    0.000    0.568    0.549
  Y ~                                                                   
    M          (b)    0.714    0.118    6.075    0.000    0.714    0.616

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Y                 0.028    0.098    0.287    0.774    0.028    0.024
   .M                -0.072    0.084   -0.857    0.392   -0.072   -0.073
    X                -0.173    0.096   -1.811    0.070   -0.173   -0.181

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Y                 0.850    0.124    6.841    0.000    0.850    0.644
   .M                 0.686    0.083    8.262    0.000    0.686    0.699
    X                 0.916    0.129    7.095    0.000    0.916    1.000

R-Square:
                   Estimate
    Y                 0.356
    M                 0.301

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    indirect          0.406    0.094    4.320    0.000    0.406    0.338
    total             0.361    0.108    3.352    0.001    0.361    0.300

11.4 Parameter Estimates

11.4.1 Bias-Corrected Bootstrap

Adjusted bootstrap percentile (BCa) method, but with no correction for acceleration (only for bias):

mediationFit_estimates_bca <- parameterEstimates(
  mediationFit,
  boot.ci.type = "bca.simple",
  standardized = TRUE)

mediationFit_estimates <- mediationFit_estimates_bca

mediationFit_estimates_bca

11.4.2 Percentile Bootstrap

mediationFit_estimates_perc <- parameterEstimates(
  mediationFit,
  boot.ci.type = "perc",
  standardized = TRUE)

mediationFit_estimates_perc

11.5 Indirect Effect

11.5.1 Parameter Estimate

Bias-Corrected Bootstrap:

mediationFit_estimates_bca %>% 
  filter(label == "indirect")

Percentile Bootstrap:

mediationFit_estimates_perc %>% 
  filter(label == "indirect")

11.5.2 Effect Size

11.5.2.1 Standardized Estimate (\(\beta\))

\[ \beta(ab) = ab \cdot \frac{SD_\text{Y}}{SD_\text{X}} \]

mediationFit_indirect <- mediationFit_estimates %>% 
  filter(label == "indirect") %>% 
  select(std.all) %>% 
  as.numeric

mediationFit_indirect
[1] 0.3380996

11.5.2.2 Proportion Mediated (PM)

\[ P_M = \frac{ab}{c} = \frac{ab}{c' + ab} \]

Effect size: Proportion mediated (PM); i.e., the proportion of the total effect that is mediated; calculated by the magnitude of the indirect effect divided by the magnitude of the total effect:

mediationFit_total <- mediationFit_estimates %>% 
  filter(label == "total") %>% 
  select(std.all) %>% 
  as.numeric

mediationFit_pm <- mediationFit_indirect / mediationFit_total
mediationFit_pm
[1] 1.125192

In this case, the direct effect and indirect effect have opposite signs (negative and positive, respectively). This is called inconsistent mediation, and renders the estimate of proportion mediated not a meaningful estimate of effect size (which explains why it the estimate exceeds 1.0; Fairchild & McDaniel, 2017).

11.5.2.3 Proportion of Variance in Y That is Explained by the Indirect Effect (R2mediated)

Formulas from Lachowicz et al. (2018):

\[ \begin{aligned} R^2_\text{mediated} &= r^2_{\text{MY}} - (R^2_{\text{Y} \cdot \text{MX}} - r^2_{\text{XY}}) \\ &= (\beta^2_{\text{YM} \cdot \text{X}} + \beta_{\text{YX} \cdot \text{M}} \cdot \beta_{\text{MX}}) ^2 - [\beta^2_{\text{YX}} + \beta^2_{\text{YM} \cdot \text{X}}(1 - \beta^2_{\text{MX}}) - \beta^2_{\text{YX}}] \end{aligned} \]

rXY <- as.numeric(cor.test(
  ~ X + Y,
  data = mydata
)$estimate)

rMY <- as.numeric(cor.test(
  ~ M + Y,
  data = mydata
)$estimate)

RsquaredYmx <- summary(lm(
  Y ~ M + X,
  data = mydata))$r.squared

RsquaredMed1 <- (rMY^2) - (RsquaredYmx - (rXY^2))
RsquaredMed1
[1] 0.08930037
betaYMgivenX <- mediationFit_estimates %>% 
  filter(label == "b") %>% 
  select(std.all) %>% 
  as.numeric

betaYXgivenM <- mediationFit_estimates %>% 
  filter(label == "direct") %>% 
  select(std.all) %>% 
  as.numeric

betaMX <- mediationFit_estimates %>% 
  filter(label == "a") %>% 
  select(std.all) %>% 
  as.numeric

betaYX <- as.numeric(cor.test(
  ~ X + Y,
  data = mydata
)$estimate)

RsquaredMed2 <- ((betaYMgivenX + (betaYXgivenM * betaMX))^2) - ((betaYX^2) + (betaYMgivenX^2)*(1 - (betaMX^2)) - (betaYX^2))
RsquaredMed2
[1] 0.08930037

11.5.2.4 The Proportion of Variance in Y That is Accounted for Jointly by M and X (upsilon; \(v\))

Formulas from Lachowicz et al. (2018):

\[ \begin{aligned} v &= (r_{\text{YM}} - \beta_{\text{MX}} \cdot \beta^2_{\text{YX} \cdot \text{M}}) ^ 2 - (R^2_{\text{Y} \cdot \text{MX}} - r^2_{\text{YX}})\\ &= \beta^2_a \cdot \beta^2_b \end{aligned} \]

where \(a\) is the \(a\) path (\(\beta^2_{\text{MX}}\)), and \(b\) is the \(b\) path (\(\beta^2_{\text{YM} \cdot \text{X}}\)).

The estimate corrects for spurious correlation induced by the ordering of variables.

upsilon1 <- ((rMY - (betaMX * (betaYXgivenM^2)))^2) - (RsquaredYmx - (rXY^2))
upsilon1
[1] 0.08837615
upsilon2 <- (betaYMgivenX^2) - (RsquaredYmx - (rXY^2))
upsilon2
[1] 0.1143113
upsilon3 <- mediationFit_indirect ^ 2
upsilon3
[1] 0.1143113
upsilon(
  x = mydata$X,
  mediator = mydata$M,
  dv = mydata$Y,
  bootstrap = FALSE
)

11.5.2.5 Ratio of the Indirect Effect Relative to Its Maximum Possible Value in the Data (\(\kappa^2\))

\[ \kappa^2 = \frac{ab}{\text{MAX}(ab)} \]

Kappa-squared (\(\kappa^2\)) is the ratio of the indirect effect relative to its maximum possible value in the data given the observed variability of X, Y, and M and their intercorrelations in the data. This estimate is no longer recommended (Wen & Fan, 2015).

11.5.2.6 Other Effect Sizes

mediation(
  x = mydata$X,
  mediator = mydata$M,
  dv = mydata$Y,
  bootstrap = FALSE
)
$Y.on.X
$Y.on.X$Regression.Table
                Estimate Std. Error    t value   p(>|t|) Low Conf Limit
Intercept.Y_X -0.0234265  0.1124386 -0.2083494 0.8353886     -0.2465572
c (Regressor)  0.3605967  0.1156225  3.1187424 0.0023850      0.1311477
              Up Conf Limit
Intercept.Y_X     0.1997041
c (Regressor)     0.5900458

$Y.on.X$Model.Fit
       Residual standard error (RMSE) numerator df denomenator df F-Statistic
Values                        1.10643            1             98    9.726554
       p-value (F)        R^2    Adj R^2 Low Conf Limit Up Conf Limit
Values    0.002385 0.09028929 0.08100653     0.01207068     0.2183844


$M.on.X
$M.on.X$Regression.Table
                 Estimate Std. Error    t value          p(>|t|) Low Conf Limit
Intercept.M_X -0.07206805 0.08501733 -0.8476865 0.39867814281309     -0.2407822
a (Regressor)  0.56815370 0.08742477  6.4987723 0.00000000339244      0.3946621
              Up Conf Limit
Intercept.M_X    0.09664608
a (Regressor)    0.74164532

$M.on.X$Model.Fit
       Residual standard error (RMSE) numerator df denomenator df F-Statistic
Values                      0.8365964            1             98    42.23404
            p-value (F)       R^2   Adj R^2 Low Conf Limit Up Conf Limit
Values 0.00000000339244 0.3011683 0.2940373      0.1546027     0.4498597


$Y.on.X.and.M
$Y.on.X.and.M$Regression.Table
                       Estimate Std. Error    t value          p(>|t|)
Intercept.Y_XM       0.02804007 0.09547198  0.2936994 0.76961507960580
c.prime (Regressor) -0.04514372 0.11701196 -0.3858043 0.70048641908141
b (Mediator)         0.71413854 0.11302357  6.3184922 0.00000000802134
                    Low Conf Limit Up Conf Limit
Intercept.Y_XM          -0.1614454     0.2175255
c.prime (Regressor)     -0.2773801     0.1870926
b (Mediator)             0.4898180     0.9384590

$Y.on.X.and.M$Model.Fit
       Residual standard error (RMSE) numerator df denomenator df F-Statistic
Values                      0.9360479            2             97    26.75653
              p-value (F)       R^2   Adj R^2 Low Conf Limit Up Conf Limit
Values 0.0000000005572898 0.3555377 0.3422498      0.1958319     0.4955139


$Effect.Sizes
                                              [,1]
Indirect.Effect                         0.40574046
Indirect.Effect.Partially.Standardized  0.35154486
Index.of.Mediation                      0.33809959
R2_4.5                                  0.08930037
R2_4.6                                  0.08781296
R2_4.7                                  0.24698638
Ratio.of.Indirect.to.Total.Effect       1.12519172
Ratio.of.Indirect.to.Direct.Effect     -8.98774887
Success.of.Surrogate.Endpoint           0.63468166
Residual.Based_Gamma                    0.08153354
Residual.Based.Standardized_gamma       0.08679941
SOS                                     0.98904723

11.6 Estimates of Model Fit

The model is saturated because it has as many estimated parameters as there are data points (i.e., in terms of means, variances, and covariances), so it has zero degrees of freedom. Because the model is saturated, it has “perfect” fit.

fitMeasures(
  mediationFit,
  fit.measures = c(
    "chisq", "df", "pvalue",
    "baseline.chisq","baseline.df","baseline.pvalue",
    "rmsea", "cfi", "tli", "srmr"))
          chisq              df          pvalue  baseline.chisq     baseline.df 
          0.000           0.000              NA          79.768           3.000 
baseline.pvalue           rmsea             cfi             tli            srmr 
          0.000           0.000           1.000           1.000           0.000 

11.7 Residuals of Observed vs. Model-Implied Correlation Matrix

residuals(mediationFit, type = "cor")
$type
[1] "cor.bollen"

$cov
  Y M X
Y 0    
M 0 0  
X 0 0 0

$mean
Y M X 
0 0 0 

11.8 Modification Indices

modificationindices(mediationFit, sort. = TRUE)

11.9 Internal Consistency Reliability

compRelSEM(mediationFit)
named numeric(0)

11.10 Path Diagram

semPaths(
  mediationFit,
  what = "Std.all",
  layout = "tree2",
  edge.label.cex = 1.5)

12 Moderation

states <- as.data.frame(state.x77)
names(states)[which(names(states) == "HS Grad")] <- "HS.Grad"
states$Income_rescaled <- states$Income/100

12.1 Mean Center Predictors

Make sure to mean-center or orthogonalize predictors before computing the interaction term.

states$Illiteracy_centered <- scale(states$Illiteracy, scale = FALSE)
states$Murder_centered <- scale(states$Murder, scale = FALSE)

12.2 Compute Interaction Term

states$interaction <- states$Illiteracy_centered * states$Murder_centered

12.3 Model Syntax

moderationModel <- '
Income_rescaled ~ Illiteracy_centered + Murder_centered + interaction + HS.Grad
'

12.4 Fit the Model

moderationFit <- sem(
  moderationModel,
  data = states,
  missing = "ML",
  estimator = "MLR",
  std.lv = TRUE,
  fixed.x = FALSE)
Warning: lavaan->lav_model_vcov():  
   The variance-covariance matrix of the estimated parameters (vcov) does not 
   appear to be positive definite! The smallest eigenvalue (= 1.282391e-16) 
   is close to zero. This may be a symptom that the model is not identified.

12.5 Summary Output

summary(
  moderationFit,
  fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 27 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        20

  Number of observations                            50
  Number of missing patterns                         1

Model Test User Model:
                                              Standard      Scaled
  Test Statistic                                 0.000       0.000
  Degrees of freedom                                 0           0

Model Test Baseline Model:

  Test statistic                                33.312      29.838
  Degrees of freedom                                 4           4
  P-value                                        0.000       0.000
  Scaling correction factor                                  1.116

User Model versus Baseline Model:

  Comparative Fit Index (CFI)                    1.000       1.000
  Tucker-Lewis Index (TLI)                       1.000       1.000
                                                                  
  Robust Comparative Fit Index (CFI)                         1.000
  Robust Tucker-Lewis Index (TLI)                            1.000

Loglikelihood and Information Criteria:

  Loglikelihood user model (H0)               -570.333    -570.333
  Loglikelihood unrestricted model (H1)       -570.333    -570.333
                                                                  
  Akaike (AIC)                                1180.666    1180.666
  Bayesian (BIC)                              1218.907    1218.907
  Sample-size adjusted Bayesian (SABIC)       1156.130    1156.130

Root Mean Square Error of Approximation:

  RMSEA                                          0.000          NA
  90 Percent confidence interval - lower         0.000          NA
  90 Percent confidence interval - upper         0.000          NA
  P-value H_0: RMSEA <= 0.050                       NA          NA
  P-value H_0: RMSEA >= 0.080                       NA          NA
                                                                  
  Robust RMSEA                                               0.000
  90 Percent confidence interval - lower                     0.000
  90 Percent confidence interval - upper                     0.000
  P-value H_0: Robust RMSEA <= 0.050                            NA
  P-value H_0: Robust RMSEA >= 0.080                            NA

Standardized Root Mean Square Residual:

  SRMR                                           0.000       0.000

Parameter Estimates:

  Standard errors                             Sandwich
  Information bread                           Observed
  Observed information based on                Hessian

Regressions:
                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Income_rescaled ~                                                      
    Illitrcy_cntrd     0.371    1.881    0.197    0.844    0.371    0.037
    Murder_centerd     0.171    0.245    0.696    0.486    0.171    0.103
    interaction       -0.970    0.254   -3.823    0.000   -0.970   -0.355
    HS.Grad            0.408    0.149    2.727    0.006    0.408    0.536

Covariances:
                         Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Illiteracy_centered ~~                                                      
    Murder_centerd          1.550    0.315    4.924    0.000    1.550    0.703
    interaction             0.733    0.323    2.271    0.023    0.733    0.546
    HS.Grad                -3.171    0.711   -4.459    0.000   -3.171   -0.657
  Murder_centered ~~                                                          
    interaction             2.223    1.620    1.372    0.170    2.223    0.273
    HS.Grad               -14.259    4.049   -3.522    0.000  -14.259   -0.488
  interaction ~~                                                              
    HS.Grad                -7.938    2.987   -2.657    0.008   -7.938   -0.446

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Income_rescald   24.215    7.858    3.081    0.002   24.215    3.981
    Illitrcy_cntrd   -0.000    0.085   -0.000    1.000   -0.000   -0.000
    Murder_centerd   -0.000    0.517   -0.000    1.000   -0.000   -0.000
    interaction       1.550    0.315    4.924    0.000    1.550    0.696
    HS.Grad          53.108    1.131   46.966    0.000   53.108    6.642

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Income_rescald   19.006    4.200    4.525    0.000   19.006    0.514
    Illitrcy_cntrd    0.364    0.066    5.534    0.000    0.364    1.000
    Murder_centerd   13.355    1.754    7.614    0.000   13.355    1.000
    interaction       4.956    1.462    3.390    0.001    4.956    1.000
    HS.Grad          63.933    9.944    6.429    0.000   63.933    1.000

R-Square:
                   Estimate
    Income_rescald    0.486

12.6 Estimates of Model Fit

The model is saturated because it has as many estimated parameters as there are data points (i.e., in terms of means, variances, and covariances), so it has zero degrees of freedom. Because the model is saturated, it has “perfect” fit.

fitMeasures(
  moderationFit,
  fit.measures = c(
    "chisq", "df", "pvalue",
    "baseline.chisq","baseline.df","baseline.pvalue",
    "rmsea", "cfi", "tli", "srmr"))
          chisq              df          pvalue  baseline.chisq     baseline.df 
          0.000           0.000              NA          33.312           4.000 
baseline.pvalue           rmsea             cfi             tli            srmr 
          0.000           0.000           1.000           1.000           0.000 

12.7 Residuals of Observed vs. Model-Implied Correlation Matrix

residuals(moderationFit, type = "cor")
$type
[1] "cor.bollen"

$cov
                    Incm_r Illtr_ Mrdr_c intrct HS.Grd
Income_rescaled          0                            
Illiteracy_centered      0      0                     
Murder_centered          0      0      0              
interaction              0      0      0      0       
HS.Grad                  0      0      0      0      0

$mean
    Income_rescaled Illiteracy_centered     Murder_centered         interaction 
                  0                   0                   0                   0 
            HS.Grad 
                  0 

12.8 Modification Indices

modificationindices(moderationFit, sort. = TRUE)

12.9 Path Diagram

semPaths(
  moderationFit,
  what = "Std.all",
  layout = "tree2",
  edge.label.cex = 1.5)

12.10 Interaction Plot

# Created Model-Implied Predicted Data Object
modelImpliedPredictedData <- expand.grid(
  Illiteracy_factor = c("Low","Middle","High"),
  Murder_factor = c("Low","Middle","High"))

Illiteracy_mean <- mean(states$Illiteracy, na.rm = TRUE)
Illiteracy_sd <- sd(states$Illiteracy, na.rm = TRUE)

Murder_mean <- mean(states$Murder, na.rm = TRUE)
Murder_sd <- sd(states$Murder, na.rm = TRUE)

Illiteracy_centered_mean <- mean(states$Illiteracy_centered, na.rm = TRUE)
Illiteracy_centered_sd <- sd(states$Illiteracy_centered, na.rm = TRUE)

Murder_centered_mean <- mean(states$Murder_centered, na.rm = TRUE)
Murder_centered_sd <- sd(states$Murder_centered, na.rm = TRUE)

modelImpliedPredictedData <- modelImpliedPredictedData %>%
  mutate(
    Illiteracy = case_when(
      Illiteracy_factor == "Low" ~ Illiteracy_mean - Illiteracy_sd,
      Illiteracy_factor == "Middle" ~ Illiteracy_mean,
      Illiteracy_factor == "High" ~ Illiteracy_mean + Illiteracy_sd
    ),
    Illiteracy_centered = case_when(
      Illiteracy_factor == "Low" ~ Illiteracy_centered_mean - Illiteracy_centered_sd,
      Illiteracy_factor == "Middle" ~ Illiteracy_centered_mean,
      Illiteracy_factor == "High" ~ Illiteracy_centered_mean + Illiteracy_centered_sd
    ),
    Murder = case_when(
      Murder_factor == "Low" ~ Murder_mean - Murder_sd,
      Murder_factor == "Middle" ~ Murder_mean,
      Murder_factor == "High" ~ Murder_mean + Murder_sd
    ),
    Murder_centered = case_when(
      Murder_factor == "Low" ~ Murder_centered_mean - Murder_centered_sd,
      Murder_factor == "Middle" ~ Murder_centered_mean,
      Murder_factor == "High" ~ Murder_centered_mean + Murder_centered_sd
    ),
    interaction = Illiteracy_centered * Murder_centered,
    HS.Grad = mean(states$HS.Grad, na.rm = TRUE), # mean for covariates
    Income_rescaled = NA
  )

Murder_labels <- factor(
  modelImpliedPredictedData$Murder_factor,
  levels = c("High", "Middle", "Low"),
  labels = c("High (+1 SD)", "Middle (mean)", "Low (−1 SD)"))

modelImpliedPredictedData$Income_rescaled <- lavPredictY(
  moderationFit,
  newdata = modelImpliedPredictedData,
  ynames = "Income_rescaled"
) %>% 
  as.vector()

# Verify Computation Manually
moderationFit_parameters <- parameterEstimates(moderationFit)

moderationFit_parameters
intercept <- moderationFit_parameters[which(moderationFit_parameters$lhs == "Income_rescaled" & moderationFit_parameters$op == "~1"), "est"]
b_Illiteracy_centered <- moderationFit_parameters[which(moderationFit_parameters$lhs == "Income_rescaled" & moderationFit_parameters$rhs == "Illiteracy_centered"), "est"]
b_Murder_centered <- moderationFit_parameters[which(moderationFit_parameters$lhs == "Income_rescaled" & moderationFit_parameters$rhs == "Murder_centered"), "est"]
b_interaction <- moderationFit_parameters[which(moderationFit_parameters$lhs == "Income_rescaled" & moderationFit_parameters$rhs == "interaction"), "est"]
b_HS.Grad <- moderationFit_parameters[which(moderationFit_parameters$lhs == "Income_rescaled" & moderationFit_parameters$rhs == "HS.Grad"), "est"]

modelImpliedPredictedData <- modelImpliedPredictedData %>%
  mutate(
    Income_rescaled_calculatedManually = intercept + (b_Illiteracy_centered * Illiteracy_centered) + (b_Murder_centered * Murder_centered) + (b_interaction * interaction) + (b_HS.Grad * HS.Grad))

# Model-Implied Predicted Data
modelImpliedPredictedData
# Plot
ggplot(
  data = modelImpliedPredictedData,
  mapping = aes(
    x = Illiteracy,
    y = Income_rescaled,
    color = Murder_labels
  )
) +
  geom_line() +
  labs(color = "Murder")

12.11 Simple Slopes and Regions of Significance

https://gabriellajg.github.io/EPSY-579-R-Cookbook-for-SEM/week6_1-lavaan-lab-4-mediated-moderation-moderated-mediation.html#step-5-johnson-neyman-interval (archived at https://perma.cc/6XR6-ZPSL)

# Find the min and max values of the moderator
Murder_centered_min <- min(modelImpliedPredictedData$Murder_centered, na.rm = TRUE)
Murder_centered_max <- max(modelImpliedPredictedData$Murder_centered, na.rm = TRUE)

Murder_centered_cutoff1 <- -1.5 # pick and titrate cutoff to help find the lower bound of the region of significance
Murder_centered_cutoff2 <- -1 # pick and titrate cutoff to help find the upper bound of the region of significance

Murder_centered_sd <- sd(modelImpliedPredictedData$Murder_centered, na.rm = TRUE)

Murder_centered_low <- mean(modelImpliedPredictedData$Murder_centered, na.rm = TRUE) - sd(modelImpliedPredictedData$Murder_centered, na.rm = TRUE)
Murder_centered_mean <- mean(modelImpliedPredictedData$Murder_centered, na.rm = TRUE)
Murder_centered_high <- mean(modelImpliedPredictedData$Murder_centered, na.rm = TRUE) + sd(modelImpliedPredictedData$Murder_centered, na.rm = TRUE)

# Extend the moderation model to compute the simple slopes and conditional effects at specific values of the moderator
moderationModelSimpleSlopes <- paste0('
  # Regression
  Income_rescaled ~ b1*Illiteracy_centered + b2*Murder_centered + b3*interaction + b4*HS.Grad
  
  # Simple Slopes
  SS_min := b1 + b3 * ', Murder_centered_min, '
  SS_cutoff1 := b1 + b3 * ', Murder_centered_cutoff1, '
  SS_cutoff2 := b1 + b3 * ', Murder_centered_cutoff2, '
  SS_low := b1 + b3 * ', Murder_centered_low, '
  SS_mean := b1 + b3 * ', Murder_centered_mean, '
  SS_high := b1 + b3 * ', Murder_centered_high, '
  SS_max := b1 + b3 * ', Murder_centered_max, '
')

# Fit the Model
set.seed(52242) # for reproducibility

moderationModelSimpleSlopes_fit <- sem(
  model = moderationModelSimpleSlopes, 
  data = states,
  missing = "ML",
  estimator = "ML",
  se = "bootstrap",
  bootstrap = 1000,
  std.lv = TRUE,
  fixed.x = FALSE)

summary(
  moderationModelSimpleSlopes_fit,
  #fit.measures = TRUE,
  standardized = TRUE,
  rsquare = TRUE)
lavaan 0.6-19 ended normally after 27 iterations

  Estimator                                         ML
  Optimization method                           NLMINB
  Number of model parameters                        20

  Number of observations                            50
  Number of missing patterns                         1

Model Test User Model:
                                                      
  Test statistic                                 0.000
  Degrees of freedom                                 0

Parameter Estimates:

  Standard errors                            Bootstrap
  Number of requested bootstrap draws             1000
  Number of successful bootstrap draws            1000

Regressions:
                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Income_rescaled ~                                                      
    Illtrcy_c (b1)     0.371    2.266    0.164    0.870    0.371    0.037
    Mrdr_cntr (b2)     0.171    0.271    0.630    0.528    0.171    0.103
    interactn (b3)    -0.970    0.307   -3.157    0.002   -0.970   -0.355
    HS.Grad   (b4)     0.408    0.162    2.521    0.012    0.408    0.536

Covariances:
                         Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
  Illiteracy_centered ~~                                                      
    Murder_centerd          1.550    0.312    4.963    0.000    1.550    0.703
    interaction             0.733    0.320    2.290    0.022    0.733    0.546
    HS.Grad                -3.171    0.700   -4.532    0.000   -3.171   -0.657
  Murder_centered ~~                                                          
    interaction             2.223    1.596    1.393    0.164    2.223    0.273
    HS.Grad               -14.259    3.925   -3.633    0.000  -14.259   -0.488
  interaction ~~                                                              
    HS.Grad                -7.938    2.988   -2.656    0.008   -7.938   -0.446

Intercepts:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Income_rescald   24.215    8.505    2.847    0.004   24.215    3.981
    Illitrcy_cntrd   -0.000    0.087   -0.000    1.000   -0.000   -0.000
    Murder_centerd   -0.000    0.524   -0.000    1.000   -0.000   -0.000
    interaction       1.550    0.312    4.969    0.000    1.550    0.696
    HS.Grad          53.108    1.124   47.235    0.000   53.108    6.642

Variances:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
   .Income_rescald   19.006    3.928    4.838    0.000   19.006    0.514
    Illitrcy_cntrd    0.364    0.065    5.586    0.000    0.364    1.000
    Murder_centerd   13.355    1.780    7.501    0.000   13.355    1.000
    interaction       4.956    1.441    3.439    0.001    4.956    1.000
    HS.Grad          63.933    9.923    6.443    0.000   63.933    1.000

R-Square:
                   Estimate
    Income_rescald    0.486

Defined Parameters:
                   Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
    SS_min            3.953    2.925    1.351    0.177    3.953    1.348
    SS_cutoff1        1.827    2.493    0.733    0.464    1.827    0.570
    SS_cutoff2        1.342    2.410    0.557    0.578    1.342    0.392
    SS_low            3.473    2.820    1.232    0.218    3.473    1.172
    SS_mean           0.371    2.267    0.164    0.870    0.371    0.037
    SS_high          -2.731    2.064   -1.323    0.186   -2.731   -1.099
    SS_max           -3.211    2.073   -1.549    0.121   -3.211   -1.274
moderationModelSimpleSlopesFit_parameters <- parameterEstimates(
  moderationModelSimpleSlopes_fit,
  level = 0.95,
  boot.ci.type = "bca.simple")

moderationModelSimpleSlopesFit_parameters

A simple slope of the predictor on the outcome is considered significant at a given level of the moderator if the 95% confidence interval from the bootstrapped estimates of the simple slopes at that level of the moderator (i.e., [ci.lower,ci.upper]) does not include zero. In this particular model, the predictor (Illiteracy) is not significant at any of the levels of the moderator (Murder), because the 95% confidence intervals of all simple slopes include zero, in this case, likely due to a small sample size (\(N = 50\)) and the resulting low power.

12.12 Johnson-Neyman Plot

As I noted above, the predictor is not significant at any levels of the moderator. Nevertheless, I created a made up Johnson-Neyman plot by specifying the (fictitious) range of significance, for purposes of demonstration. The band around the line indicates the 95% confidence interval of the simple slope of the predictor on the outcome as a function of different levels of the moderator. In reality (unlike in this fictitious example), the regions of significance would only be regions where the 95% confidence interval of the simple slope does not include zero.

The standard error of the slope is the square root of the variance of the slope. The forumula for computing the standard error of the slope is based on the formula for computing the variance of a weighted sum.

The slope of the predictor on the outcome at different levels of the moderator is calculated as (Jaccard & Turisi, 2003):

\[ \text{slope}_\text{predictor} = b_1 + b_3 \cdot Z \]

The standard error of the slope of the predictor on the outcome at different levels of the moderator is calculated as (https://stats.stackexchange.com/a/55973/20338; archived at https://perma.cc/V255-853Z; Jaccard & Turisi, 2003):

\[ \begin{aligned} SE(\text{slope}_\text{predictor}) &= \sqrt{Var(b_1) + Var(b_3) \cdot Z^2 + 2 \cdot Z \cdot Cov(b1, b3)} \\ SE(b_1 + b_3 \cdot Z) &= \end{aligned} \]

where:

  • \(b_1\) is the slope of the predictor on the outcome
  • \(b_3\) is the slope of the interaction term on the outcome
  • \(Z\) is the moderator

The variance of a weighted sum is:

\[ \begin{aligned} Var(\text{slope}_\text{predictor}) &= Var(b_1) + Var(b_3) \cdot Z^2 + 2 \cdot Z \cdot Cov(b1, b3) \\ Var(b_1 + b_3 \cdot Z) &= \end{aligned} \]

The standard error is the square root of the variance. The 95% confidence interval of the slope is \(\pm\) 1.959964 (i.e., qnorm(.975)) standard errors of the slope estimate.

# Create a data frame for plotting
Murder_min <- min(states$Murder, na.rm = TRUE)
Murder_max <- max(states$Murder, na.rm = TRUE)

plot_data <- data.frame(
  Murder = seq(Murder_min, Murder_max, length.out = 10000)
)

plot_data$Murder_centered <- scale(plot_data$Murder, scale = FALSE)

# Calculate predicted slopes and confidence intervals
b1 <- moderationModelSimpleSlopesFit_parameters[which(moderationModelSimpleSlopesFit_parameters$label == "b1"), "est"]
b3 <- moderationModelSimpleSlopesFit_parameters[which(moderationModelSimpleSlopesFit_parameters$label == "b3"), "est"]

b1_se <- moderationModelSimpleSlopesFit_parameters[which(moderationModelSimpleSlopesFit_parameters$label == "b1"), "se"]
b3_se <- moderationModelSimpleSlopesFit_parameters[which(moderationModelSimpleSlopesFit_parameters$label == "b3"), "se"]

varianceCovarianceMatrix <- vcov(moderationFit)

b1_var <- varianceCovarianceMatrix["Income_rescaled~Illiteracy_centered","Income_rescaled~Illiteracy_centered"]
b3_var <- varianceCovarianceMatrix["interaction~~interaction","interaction~~interaction"]
cov_b1b3 <- varianceCovarianceMatrix["Income_rescaled~Illiteracy_centered","interaction~~interaction"]

#sqrt((b1_se^2) + ((b3_se^2) * plot_data$Murder_centered^2) + (2 * plot_data$Murder_centered * cov_b1b3))
#sqrt((b1_var) + ((b3_var) * plot_data$Murder_centered^2) + (2 * plot_data$Murder_centered * cov_b1b3))

plot_data$predicted_slopes <- b1 + b3 * plot_data$Murder_centered
plot_data$slope_se <- sqrt((b1_var) + ((b3_var) * plot_data$Murder_centered^2) + (2 * plot_data$Murder_centered * cov_b1b3))

# Calculated the 95% confidence interval around the simple slope
plot_data$lower_ci <- plot_data$predicted_slopes - qnorm(.975) * plot_data$slope_se
plot_data$upper_ci <- plot_data$predicted_slopes + qnorm(.975) * plot_data$slope_se

# Specify the significant range (based on the regions identified in the simple slopes analysis, see "Simple Slopes and Regions of Significance" section above)
plot_data$significant_slope <- FALSE
plot_data$significant_slope[which(plot_data$Murder_centered < -4.2 | plot_data$Murder_centered > 3.75)] <-TRUE # specify significant range

# Specify the significant region number (there are either 0, 1, or 2 significant regions; in such cases, there would be 1, 0 or 1 or 2, or 1 nonsignificant regions, respectively)--for instance, sig from 0-4, ns from 4-12, and sig from 12-16 would be 2 significant regions and 1 nonsignificant region
plot_data$significantRegionNumber <- NA
plot_data$significantRegionNumber[which(plot_data$Murder_centered < -4.2)] <- 1 # specify significant range 1
plot_data$significantRegionNumber[which(plot_data$Murder_centered > 3.75)] <- 2 # specify significant range 2

min(plot_data$Murder[which(plot_data$significant_slope == FALSE)])
[1] 4.051215
max(plot_data$Murder[which(plot_data$significant_slope == FALSE)])
[1] 11.99938
ggplot(plot_data, aes(x = Murder, y = predicted_slopes)) +
  geom_ribbon(
    data = plot_data %>% filter(significant_slope == FALSE),
    aes(ymin = lower_ci, ymax = upper_ci),
    fill = "#F8766D",
    alpha = 0.2) + 
  geom_ribbon(
    data = plot_data %>% filter(significantRegionNumber == 1),
    aes(ymin = lower_ci, ymax = upper_ci),
    fill = "#00BFC4",
    alpha = 0.2) + 
  geom_ribbon(
    data = plot_data %>% filter(significantRegionNumber == 2),
    aes(ymin = lower_ci, ymax = upper_ci),
    fill = "#00BFC4",
    alpha = 0.2) +
  geom_line(
    data = plot_data %>% filter(significant_slope == FALSE),
    aes(x = Murder, y = predicted_slopes),
    color = "#F8766D",
    linewidth = 2) +
  geom_line(
    data = plot_data %>% filter(significantRegionNumber == 1),
    aes(x = Murder, y = predicted_slopes),
    color = "#00BFC4",
    linewidth = 2) +
  geom_line(
    data = plot_data %>% filter(significantRegionNumber == 2),
    aes(x = Murder, y = predicted_slopes),
    color = "#00BFC4",
    linewidth = 2) +
  geom_hline(yintercept = 0, linetype = "dashed") +
  geom_vline(xintercept = c(4.051215, 11.99938), linetype = 2, color = "#00BFC4") + # update based on numbers above
  labs(
    title = "Johnson-Neyman Plot",
    subtitle = "(blue = significant slope; pink = nonsignificant slope)",
    x = "Moderator (Murder)",
    y = "Simple Slope of Predictor (Illiteracy)") +
  theme_classic()

14 Path Diagrams

For a list of tools to create path diagrams, see here.

15 Session Info

sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
 [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
 [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
[10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   

time zone: UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.4 forcats_1.0.0   stringr_1.5.1   dplyr_1.1.4    
 [5] purrr_1.0.2     readr_2.1.5     tidyr_1.3.1     tibble_3.2.1   
 [9] ggplot2_3.5.1   tidyverse_2.0.0 MBESS_4.9.3     lcsm_0.3.2     
[13] semPlot_1.1.6   semTools_0.5-6  lavaan_0.6-19  

loaded via a namespace (and not attached):
 [1] Rdpack_2.6.2       mnormt_2.1.1       pbapply_1.7-2      gridExtra_2.3     
 [5] fdrtool_1.2.18     rlang_1.1.4        magrittr_2.0.3     rockchalk_1.8.157 
 [9] compiler_4.4.2     png_0.1-8          vctrs_0.6.5        reshape2_1.4.4    
[13] OpenMx_2.21.13     quadprog_1.5-8     pkgconfig_2.0.3    fastmap_1.2.0     
[17] arm_1.14-4         backports_1.5.0    labeling_0.4.3     pbivnorm_0.6.0    
[21] rmarkdown_2.29     tzdb_0.4.0         nloptr_2.1.1       xfun_0.50         
[25] cachem_1.1.0       kutils_1.73        jsonlite_1.8.9     jpeg_0.1-10       
[29] psych_2.4.12       parallel_4.4.2     cluster_2.1.6      R6_2.5.1          
[33] bslib_0.8.0        stringi_1.8.4      boot_1.3-31        rpart_4.1.23      
[37] jquerylib_0.1.4    Rcpp_1.0.13-1      knitr_1.49         base64enc_0.1-3   
[41] timechange_0.3.0   Matrix_1.7-1       splines_4.4.2      nnet_7.3-19       
[45] igraph_2.1.3       tidyselect_1.2.1   rstudioapi_0.17.1  abind_1.4-8       
[49] yaml_2.3.10        qgraph_1.9.8       lattice_0.22-6     plyr_1.8.9        
[53] withr_3.0.2        coda_0.19-4.1      evaluate_1.0.3     foreign_0.8-87    
[57] RcppParallel_5.1.9 zip_2.3.1          pillar_1.10.1      carData_3.0-5     
[61] checkmate_2.3.2    stats4_4.4.2       reformulas_0.4.0   generics_0.1.3    
[65] hms_1.1.3          munsell_0.5.1      scales_1.3.0       minqa_1.2.8       
[69] gtools_3.9.5       xtable_1.8-4       glue_1.8.0         mi_1.1            
[73] Hmisc_5.2-2        tools_4.4.2        data.table_1.16.4  lme4_1.1-36       
[77] openxlsx_4.2.7.1   XML_3.99-0.18      grid_4.4.2         sem_3.1-16        
[81] rbibutils_2.3      colorspace_2.1-1   nlme_3.1-166       htmlTable_2.4.3   
[85] Formula_1.2-5      cli_3.6.3          corpcor_1.6.10     glasso_1.11       
[89] gtable_0.3.6       sass_0.4.9         digest_0.6.37      farver_2.1.2      
[93] htmlwidgets_1.6.4  htmltools_0.5.8.1  lifecycle_1.0.4    lisrelToR_0.3     
[97] MASS_7.3-61       
LS0tCnRpdGxlOiAiU3RydWN0dXJhbCBFcXVhdGlvbiBNb2RlbGluZyIKb3V0cHV0OgogIGh0bWxfZG9jdW1lbnQ6CiAgICBjb2RlX2ZvbGRpbmc6IHNob3cKLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZSA9IEZBTFNFfQprbml0cjo6b3B0c19jaHVuayRzZXQoCiAgZWNobyA9IFRSVUUsCiAgZXJyb3IgPSBUUlVFLAogIGNvbW1lbnQgPSAiIiwKICBjbGFzcy5zb3VyY2UgPSAiZm9sZC1zaG93IikKCm9wdGlvbnMoc2NpcGVuID0gOTk5KQpgYGAKCiMgUHJlYW1ibGUKCiMjIEluc3RhbGwgTGlicmFyaWVzCgpgYGB7ciwgY2xhc3Muc291cmNlID0gImZvbGQtaGlkZSJ9CiNpbnN0YWxsLnBhY2thZ2VzKCJyZW1vdGVzIikKI3JlbW90ZXM6Omluc3RhbGxfZ2l0aHViKCJEZXZQc3lMYWIvcGV0ZXJzZW5sYWIiKQpgYGAKCiMjIExvYWQgTGlicmFyaWVzCgpgYGB7ciwgbWVzc2FnZSA9IEZBTFNFLCB3YXJuaW5nID0gRkFMU0UsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQpsaWJyYXJ5KCJsYXZhYW4iKQpsaWJyYXJ5KCJzZW1Ub29scyIpCmxpYnJhcnkoInNlbVBsb3QiKQpsaWJyYXJ5KCJsY3NtIikKbGlicmFyeSgiTUJFU1MiKQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQpgYGAKCiMgU2ltdWxhdGUgRGF0YQoKYGBge3IsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQpzZXQuc2VlZCg1MjI0MikKCnNhbXBsZVNpemUgPC0gMTAwCgpYIDwtIHJub3JtKHNhbXBsZVNpemUpCk0gPC0gMC41KlggKyBybm9ybShzYW1wbGVTaXplKQpZIDwtIDAuNypNICsgcm5vcm0oc2FtcGxlU2l6ZSkKCm15ZGF0YSA8LSBkYXRhLmZyYW1lKAogIFggPSBYLAogIFkgPSBZLAogIE0gPSBNKQpgYGAKCiMgSW1wb3J0IGRhdGEKCiMgT3ZlcnZpZXcKCmh0dHBzOi8vaXNhYWN0cGV0ZXJzZW4uZ2l0aHViLmlvL1ByaW5jaXBsZXMtUHN5Y2hvbG9naWNhbC1Bc3Nlc3NtZW50L3NlbS5odG1sCgojIEFuYWx5c2lzIGV4YW1wbGVzCgpodHRwczovL2lzYWFjdHBldGVyc2VuLmdpdGh1Yi5pby9QcmluY2lwbGVzLVBzeWNob2xvZ2ljYWwtQXNzZXNzbWVudC9zZW0uaHRtbCNzZW1Nb2RlbEV4YW1wbGUtc2VtCgojIFBsb3QgT2JzZXJ2ZWQgR3Jvd3RoIEN1cnZlCgpUcmFuc2Zvcm0gZGF0YSBmcm9tIHdpZGUgdG8gbG9uZyBmb3JtYXQ6CgpgYGB7cn0KRGVtby5ncm93dGgkaWQgPC0gMTpucm93KERlbW8uZ3Jvd3RoKQoKRGVtby5ncm93dGhfbG9uZyA8LSBEZW1vLmdyb3d0aCAlPiUgCiAgcGl2b3RfbG9uZ2VyKAogICAgY29scyA9IGModDEsdDIsdDMsdDQpLAogICAgbmFtZXNfdG8gPSAidmFyaWFibGUiLAogICAgdmFsdWVzX3RvID0gInZhbHVlIiwKICAgIG5hbWVzX3BhdHRlcm4gPSAidCguKSIpICU+JSAKICByZW5hbWUoCiAgICB0aW1lcG9pbnQgPSB2YXJpYWJsZSwKICAgIHNjb3JlID0gdmFsdWUKICApCgpEZW1vLmdyb3d0aF9sb25nJHRpbWVwb2ludCA8LSBhcy5udW1lcmljKERlbW8uZ3Jvd3RoX2xvbmckdGltZXBvaW50KQpgYGAKClBsb3QgdGhlIG9ic2VydmVkIHRyYWplY3RvcnkgZm9yIGVhY2ggcGFydGljaXBhbnQ6CgpgYGB7cn0KZ2dwbG90KAogIGRhdGEgPSBEZW1vLmdyb3d0aF9sb25nLAogIG1hcHBpbmcgPSBhZXMoCiAgICB4ID0gdGltZXBvaW50LAogICAgeSA9IHNjb3JlLAogICAgZ3JvdXAgPSBpZCkpICsKICBnZW9tX2xpbmUoKSArCiAgc2NhbGVfeF9jb250aW51b3VzKAogICAgYnJlYWtzID0gMTo0LAogICAgbmFtZSA9ICJUaW1lcG9pbnQiKSArCiAgc2NhbGVfeV9jb250aW51b3VzKAogICAgbmFtZSA9ICJTY29yZSIpCmBgYAoKIyBMYXRlbnQgR3Jvd3RoIEN1cnZlIE1vZGVsIHsjbGdjbX0KCiMjIE1vZGVsIFN5bnRheAoKIyMjIEFiYnJldmlhdGVkCgpgYGB7cn0KbGdjbTFfc3ludGF4IDwtICcKICAjIEludGVyY2VwdCBhbmQgc2xvcGUKICBpbnRlcmNlcHQgPX4gMSp0MSArIDEqdDIgKyAxKnQzICsgMSp0NAogIHNsb3BlID1+IDAqdDEgKyAxKnQyICsgMip0MyArIDMqdDQKCiAgIyBSZWdyZXNzaW9uIHBhdGhzCiAgaW50ZXJjZXB0IH4geDEgKyB4MgogIHNsb3BlIH4geDEgKyB4MgogIAogICMgVGltZS12YXJ5aW5nIGNvdmFyaWF0ZXMKICB0MSB+IGMxCiAgdDIgfiBjMgogIHQzIH4gYzMKICB0NCB+IGM0CicKYGBgCgojIyMgRnVsbAoKYGBge3J9CmxnY20yX3N5bnRheCA8LSAnCiAgIyBJbnRlcmNlcHQgYW5kIHNsb3BlCiAgaW50ZXJjZXB0ID1+IDEqdDEgKyAxKnQyICsgMSp0MyArIDEqdDQKICBzbG9wZSA9fiAwKnQxICsgMSp0MiArIDIqdDMgKyAzKnQ0CgogICMgUmVncmVzc2lvbiBwYXRocwogIGludGVyY2VwdCB+IHgxICsgeDIKICBzbG9wZSB+IHgxICsgeDIKICAKICAjIFRpbWUtdmFyeWluZyBjb3ZhcmlhdGVzCiAgdDEgfiBjMQogIHQyIH4gYzIKICB0MyB+IGMzCiAgdDQgfiBjNAogIAogICMgQ29uc3RyYWluIG9ic2VydmVkIGludGVyY2VwdHMgdG8gemVybwogIHQxIH4gMAogIHQyIH4gMAogIHQzIH4gMAogIHQ0IH4gMAogIAogICMgRXN0aW1hdGUgbWVhbiBvZiBpbnRlcmNlcHQgYW5kIHNsb3BlCiAgaW50ZXJjZXB0IH4gMQogIHNsb3BlIH4gMQonCmBgYAoKIyMgRml0IHRoZSBNb2RlbAoKIyMjIEFiYnJldmlhdGVkCgpgYGB7cn0KbGdjbTFfZml0IDwtIGdyb3d0aCgKICBsZ2NtMV9zeW50YXgsCiAgZGF0YSA9IERlbW8uZ3Jvd3RoLAogIG1pc3NpbmcgPSAiTUwiLAogIGVzdGltYXRvciA9ICJNTFIiLAogIG1lYW5zdHJ1Y3R1cmUgPSBUUlVFLAogIGludC5vdi5mcmVlID0gRkFMU0UsCiAgaW50Lmx2LmZyZWUgPSBUUlVFLAogIGZpeGVkLnggPSBGQUxTRSwKICBlbS5oMS5pdGVyLm1heCA9IDEwMDAwMCkKYGBgCgojIyMgRnVsbAoKYGBge3J9CmxnY20yX2ZpdCA8LSBzZW0oCiAgbGdjbTJfc3ludGF4LAogIGRhdGEgPSBEZW1vLmdyb3d0aCwKICBtaXNzaW5nID0gIk1MIiwKICBlc3RpbWF0b3IgPSAiTUxSIiwKICBtZWFuc3RydWN0dXJlID0gVFJVRSwKICBmaXhlZC54ID0gRkFMU0UsCiAgZW0uaDEuaXRlci5tYXggPSAxMDAwMDApCmBgYAoKIyMgU3VtbWFyeSBPdXRwdXQKCiMjIyBBYmJyZXZpYXRlZAoKYGBge3J9CnN1bW1hcnkoCiAgbGdjbTFfZml0LAogIGZpdC5tZWFzdXJlcyA9IFRSVUUsCiAgc3RhbmRhcmRpemVkID0gVFJVRSwKICByc3F1YXJlID0gVFJVRSkKYGBgCgojIyMgRnVsbAoKYGBge3J9CnN1bW1hcnkoCiAgbGdjbTJfZml0LAogIGZpdC5tZWFzdXJlcyA9IFRSVUUsCiAgc3RhbmRhcmRpemVkID0gVFJVRSwKICByc3F1YXJlID0gVFJVRSkKYGBgCgojIyBFc3RpbWF0ZXMgb2YgTW9kZWwgRml0CgpgYGB7cn0KZml0TWVhc3VyZXMoCiAgbGdjbTFfZml0LAogIGZpdC5tZWFzdXJlcyA9IGMoCiAgICAiY2hpc3EiLCAiZGYiLCAicHZhbHVlIiwKICAgICJjaGlzcS5zY2FsZWQiLCAiZGYuc2NhbGVkIiwgInB2YWx1ZS5zY2FsZWQiLAogICAgImNoaXNxLnNjYWxpbmcuZmFjdG9yIiwKICAgICJiYXNlbGluZS5jaGlzcSIsImJhc2VsaW5lLmRmIiwiYmFzZWxpbmUucHZhbHVlIiwKICAgICJybXNlYSIsICJjZmkiLCAidGxpIiwgInNybXIiLAogICAgInJtc2VhLnJvYnVzdCIsICJjZmkucm9idXN0IiwgInRsaS5yb2J1c3QiKSkKYGBgCgojIyBSZXNpZHVhbHMgb2YgT2JzZXJ2ZWQgdnMuIE1vZGVsLUltcGxpZWQgQ29ycmVsYXRpb24gTWF0cml4CgpgYGB7cn0KcmVzaWR1YWxzKAogIGxnY20xX2ZpdCwKICB0eXBlID0gImNvciIpCmBgYAoKIyMgTW9kaWZpY2F0aW9uIEluZGljZXMKCmBgYHtyfQptb2RpZmljYXRpb25pbmRpY2VzKAogIGxnY20xX2ZpdCwKICBzb3J0LiA9IFRSVUUpCmBgYAoKIyMgSW50ZXJuYWwgQ29uc2lzdGVuY3kgUmVsaWFiaWxpdHkKCmBgYHtyfQpjb21wUmVsU0VNKGxnY20xX2ZpdCkKYGBgCgojIyBQYXRoIERpYWdyYW0KCmBgYHtyfQpzZW1QYXRocygKICBsZ2NtMV9maXQsCiAgd2hhdCA9ICJTdGQuYWxsIiwKICBsYXlvdXQgPSAidHJlZTIiLAogIGVkZ2UubGFiZWwuY2V4ID0gMS41KQpgYGAKCiMjIFBsb3QgVHJhamVjdG9yaWVzCgojIyMgUHJvdG95cGljYWwgR3Jvd3RoIEN1cnZlCgpDYWxjdWxhdGVkIGZyb20gaW50ZXJjZXB0IGFuZCBzbG9wZSBwYXJhbWV0ZXJzOgoKYGBge3J9CmxnY20xX2ludGVyY2VwdCA8LSBjb2VmKGxnY20xX2ZpdClbImludGVyY2VwdH4xIl0KbGdjbTFfc2xvcGUgPC0gY29lZihsZ2NtMV9maXQpWyJzbG9wZX4xIl0KCmdncGxvdCgpICsKICB4bGFiKCJUaW1lcG9pbnQiKSArCiAgeWxhYigiU2NvcmUiKSArCiAgc2NhbGVfeF9jb250aW51b3VzKAogICAgbGltaXRzID0gYygwLCAzKSwKICAgIGxhYmVscyA9IDE6NCkgKwogIHNjYWxlX3lfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoMCwgNSkpICsKICBnZW9tX2FibGluZSgKICAgIG1hcHBpbmcgPSBhZXMoCiAgICAgIHNsb3BlID0gbGdjbTFfc2xvcGUsCiAgICAgIGludGVyY2VwdCA9IGxnY20xX2ludGVyY2VwdCkpCmBgYAoKQ2FsY3VsYXRlZCBtYW51YWxseToKCmBgYHtyfQp0aW1lcG9pbnRzIDwtIDQKCm5ld0RhdGEgPC0gZXhwYW5kLmdyaWQoCiAgdGltZSA9IGMoMSwgNCkKKQoKbmV3RGF0YSRwcmVkaWN0ZWRWYWx1ZSA8LSBOQQpuZXdEYXRhJHByZWRpY3RlZFZhbHVlW3doaWNoKG5ld0RhdGEkdGltZSA9PSAxKV0gPC0gbGdjbTFfaW50ZXJjZXB0Cm5ld0RhdGEkcHJlZGljdGVkVmFsdWVbd2hpY2gobmV3RGF0YSR0aW1lID09IDQpXSA8LSBsZ2NtMV9pbnRlcmNlcHQgKyAodGltZXBvaW50cyAtIDEpKmxnY20xX3Nsb3BlCgpnZ3Bsb3QoCiAgZGF0YSA9IG5ld0RhdGEsCiAgbWFwcGluZyA9IGFlcyh4ID0gdGltZSwgeSA9IHByZWRpY3RlZFZhbHVlKSkgKwogIHhsYWIoIlRpbWVwb2ludCIpICsKICB5bGFiKCJTY29yZSIpICsKICBzY2FsZV95X2NvbnRpbnVvdXMoCiAgICBsaW1pdHMgPSBjKDAsIDUpKSArCiAgZ2VvbV9saW5lKCkKYGBgCgojIyMgSW5kaXZpZHVhbHMnIEdyb3d0aCBDdXJ2ZXMKCkNhbGN1bGF0ZWQgZnJvbSBpbnRlcmNlcHQgYW5kIHNsb3BlIHBhcmFtZXRlcnM6CgpgYGB7cn0KbmV3RGF0YSA8LSBhcy5kYXRhLmZyYW1lKHByZWRpY3QobGdjbTFfZml0KSkKbmV3RGF0YSRpZCA8LSByb3cubmFtZXMobmV3RGF0YSkKCmdncGxvdCgKICBkYXRhID0gbmV3RGF0YSkgKwogIHhsYWIoIlRpbWVwb2ludCIpICsKICB5bGFiKCJTY29yZSIpICsKICBzY2FsZV94X2NvbnRpbnVvdXMoCiAgICBsaW1pdHMgPSBjKDAsIDMpLAogICAgbGFiZWxzID0gMTo0KSArCiAgc2NhbGVfeV9jb250aW51b3VzKAogICAgbGltaXRzID0gYygtMTAsIDIwKSkgKwogIGdlb21fYWJsaW5lKAogICAgbWFwcGluZyA9IGFlcygKICAgICAgc2xvcGUgPSBzbG9wZSwKICAgICAgaW50ZXJjZXB0ID0gaW50ZXJjZXB0KSkKYGBgCgpDYWxjdWxhdGVkIG1hbnVhbGx5OgoKYGBge3J9Cm5ld0RhdGEkdDEgPC0gbmV3RGF0YSRpbnRlcmNlcHQKbmV3RGF0YSR0NCA8LSBuZXdEYXRhJGludGVyY2VwdCArICh0aW1lcG9pbnRzIC0gMSkqbmV3RGF0YSRzbG9wZQoKbmV3RGF0YTIgPC0gcGl2b3RfbG9uZ2VyKAogIG5ld0RhdGEsCiAgY29scyA9IGModDEsIHQ0KSkgJT4lIAogIHNlbGVjdCgtaW50ZXJjZXB0LCAtc2xvcGUpCgpuZXdEYXRhMiR0aW1lIDwtIE5BCm5ld0RhdGEyJHRpbWVbd2hpY2gobmV3RGF0YTIkbmFtZSA9PSAidDEiKV0gPC0gMQpuZXdEYXRhMiR0aW1lW3doaWNoKG5ld0RhdGEyJG5hbWUgPT0gInQ0IildIDwtIDQKCmdncGxvdCgKICBkYXRhID0gbmV3RGF0YTIsCiAgbWFwcGluZyA9IGFlcyh4ID0gdGltZSwgeSA9IHZhbHVlLCBncm91cCA9IGZhY3RvcihpZCkpKSArCiAgeGxhYigiVGltZXBvaW50IikgKwogIHlsYWIoIlNjb3JlIikgKwogIHNjYWxlX3lfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoLTEwLCAyMCkpICsKICBnZW9tX2xpbmUoKQpgYGAKCiMjIyBJbmRpdmlkdWFscycgVHJhamVjdG9yaWVzIE92ZXJsYWlkIHdpdGggUHJvdG90eXBpY2FsIFRyYWplY3RvcnkKCmBgYHtyfQpuZXdEYXRhIDwtIGFzLmRhdGEuZnJhbWUocHJlZGljdChsZ2NtMV9maXQpKQpuZXdEYXRhJGlkIDwtIHJvdy5uYW1lcyhuZXdEYXRhKQoKZ2dwbG90KAogIGRhdGEgPSBuZXdEYXRhKSArCiAgeGxhYigiVGltZXBvaW50IikgKwogIHlsYWIoIlNjb3JlIikgKwogIHNjYWxlX3hfY29udGludW91cygKICAgIGxpbWl0cyA9IGMoMCwgMyksCiAgICBsYWJlbHMgPSAxOjQpICsKICBzY2FsZV95X2NvbnRpbnVvdXMoCiAgICBsaW1pdHMgPSBjKC0xMCwgMjApKSArCiAgZ2VvbV9hYmxpbmUoCiAgICBtYXBwaW5nID0gYWVzKAogICAgICBzbG9wZSA9IHNsb3BlLAogICAgICBpbnRlcmNlcHQgPSBpbnRlcmNlcHQpKSArCiAgZ2VvbV9hYmxpbmUoCiAgICBtYXBwaW5nID0gYWVzKAogICAgICBzbG9wZSA9IGxnY20xX3Nsb3BlLAogICAgICBpbnRlcmNlcHQgPSBsZ2NtMV9pbnRlcmNlcHQpLAogICAgY29sb3IgPSAiYmx1ZSIsCiAgICBsaW5ld2lkdGggPSAyKQpgYGAKCiMgTGF0ZW50IENoYW5nZSBTY29yZSBNb2RlbCB7I2xjc219CgojIyBNb2RlbCBTeW50YXgKCmBgYHtyfQpiaXZhcmlhdGVMQ1NNX3N5bnRheCA8LSBzcGVjaWZ5X2JpX2xjc20oCiAgdGltZXBvaW50cyA9IDEwLAogIHZhcl94ID0gIngiLAogIG1vZGVsX3ggPSBsaXN0KAogICAgYWxwaGFfY29uc3RhbnQgPSBUUlVFLCAjIGFscGhhID0gaW50ZXJjZXB0IChjb25zdGFudCBjaGFuZ2UgZmFjdG9yKQogICAgYmV0YSA9IFRSVUUsICMgYmV0YSA9IHByb3BvcnRpb25hbCBjaGFuZ2UgZmFjdG9yIChsYXRlbnQgdHJ1ZSBzY29yZSBwcmVkaWN0aW5nIGl0cyBjaGFuZ2Ugc2NvcmUpCiAgICBwaGkgPSBUUlVFKSwgIyBwaGkgPSBhdXRvcmVncmVzc2lvbiBvZiBjaGFuZ2Ugc2NvcmVzCiAgdmFyX3kgPSAieSIsCiAgbW9kZWxfeSA9IGxpc3QoCiAgICBhbHBoYV9jb25zdGFudCA9IFRSVUUsICMgYWxwaGEgPSBpbnRlcmNlcHQgKGNvbnN0YW50IGNoYW5nZSBmYWN0b3IpCiAgICBiZXRhID0gVFJVRSwgIyBiZXRhID0gcHJvcG9ydGlvbmFsIGNoYW5nZSBmYWN0b3IgKGxhdGVudCB0cnVlIHNjb3JlIHByZWRpY3RpbmcgaXRzIGNoYW5nZSBzY29yZSkKICAgIHBoaSA9IFRSVUUpLCAjIHBoaSA9IGF1dG9yZWdyZXNzaW9uIG9mIGNoYW5nZSBzY29yZXMKICBjb3VwbGluZyA9IGxpc3QoCiAgICBkZWx0YV9sYWdfeHkgPSBUUlVFLAogICAgZGVsdGFfbGFnX3l4ID0gVFJVRSksCiAgY2hhbmdlX2xldHRlcl94ID0gImciLAogIGNoYW5nZV9sZXR0ZXJfeSA9ICJqIikKCmNhdChiaXZhcmlhdGVMQ1NNX3N5bnRheCkKYGBgCgojIyBGaXQgdGhlIE1vZGVsCgpgYGB7cn0KYml2YXJpYXRlTENTTV9maXQgPC0gZml0X2JpX2xjc20oCiAgZGF0YSA9IGRhdGFfYmlfbGNzbSwKICB2YXJfeCA9IG5hbWVzKGRhdGFfYmlfbGNzbSlbMjo0XSwKICB2YXJfeSA9IG5hbWVzKGRhdGFfYmlfbGNzbSlbMTI6MTRdLAogIG1vZGVsX3ggPSBsaXN0KAogICAgYWxwaGFfY29uc3RhbnQgPSBUUlVFLCAjIGFscGhhID0gaW50ZXJjZXB0IChjb25zdGFudCBjaGFuZ2UgZmFjdG9yKQogICAgYmV0YSA9IFRSVUUsICMgYmV0YSA9IHByb3BvcnRpb25hbCBjaGFuZ2UgZmFjdG9yIChsYXRlbnQgdHJ1ZSBzY29yZSBwcmVkaWN0aW5nIGl0cyBjaGFuZ2Ugc2NvcmUpCiAgICBwaGkgPSBGQUxTRSksICMgcGhpID0gYXV0b3JlZ3Jlc3Npb24gb2YgY2hhbmdlIHNjb3JlcwogIG1vZGVsX3kgPSBsaXN0KAogICAgYWxwaGFfY29uc3RhbnQgPSBUUlVFLCAjIGFscGhhID0gaW50ZXJjZXB0IChjb25zdGFudCBjaGFuZ2UgZmFjdG9yKQogICAgYmV0YSA9IFRSVUUsICMgYmV0YSA9IHByb3BvcnRpb25hbCBjaGFuZ2UgZmFjdG9yIChsYXRlbnQgdHJ1ZSBzY29yZSBwcmVkaWN0aW5nIGl0cyBjaGFuZ2Ugc2NvcmUpCiAgICBwaGkgPSBUUlVFKSwgIyBwaGkgPSBhdXRvcmVncmVzc2lvbiBvZiBjaGFuZ2Ugc2NvcmVzCiAgY291cGxpbmcgPSBsaXN0KAogICAgZGVsdGFfbGFnX3h5ID0gVFJVRSwKICAgIHhpX2xhZ195eCA9IFRSVUUpLAogIGZpeGVkLnggPSBGQUxTRQogICkKYGBgCgojIyBTdW1tYXJ5IE91dHB1dAoKYGBge3J9CnN1bW1hcnkoCiAgYml2YXJpYXRlTENTTV9maXQsCiAgZml0Lm1lYXN1cmVzID0gVFJVRSwKICBzdGFuZGFyZGl6ZWQgPSBUUlVFLAogIHJzcXVhcmUgPSBUUlVFKQpgYGAKCiMjIEVzdGltYXRlcyBvZiBNb2RlbCBGaXQKCmBgYHtyfQpmaXRNZWFzdXJlcygKICBiaXZhcmlhdGVMQ1NNX2ZpdCwKICBmaXQubWVhc3VyZXMgPSBjKAogICAgImNoaXNxIiwgImRmIiwgInB2YWx1ZSIsCiAgICAiY2hpc3Euc2NhbGVkIiwgImRmLnNjYWxlZCIsICJwdmFsdWUuc2NhbGVkIiwKICAgICJjaGlzcS5zY2FsaW5nLmZhY3RvciIsCiAgICAiYmFzZWxpbmUuY2hpc3EiLCJiYXNlbGluZS5kZiIsImJhc2VsaW5lLnB2YWx1ZSIsCiAgICAicm1zZWEiLCAiY2ZpIiwgInRsaSIsICJzcm1yIiwKICAgICJybXNlYS5yb2J1c3QiLCAiY2ZpLnJvYnVzdCIsICJ0bGkucm9idXN0IikpCmBgYAoKIyMgUmVzaWR1YWxzIG9mIE9ic2VydmVkIHZzLiBNb2RlbC1JbXBsaWVkIENvcnJlbGF0aW9uIE1hdHJpeAoKYGBge3J9CnJlc2lkdWFscygKICBiaXZhcmlhdGVMQ1NNX2ZpdCwKICB0eXBlID0gImNvciIpCmBgYAoKIyMgTW9kaWZpY2F0aW9uIEluZGljZXMKCmBgYHtyfQptb2RpZmljYXRpb25pbmRpY2VzKAogIGJpdmFyaWF0ZUxDU01fZml0LAogIHNvcnQuID0gVFJVRSkKYGBgCgojIyBQYXRoIERpYWdyYW0KCmBgYHtyfQpzZW1QYXRocygKICBiaXZhcmlhdGVMQ1NNX2ZpdCwKICB3aGF0ID0gIlN0ZC5hbGwiLAogIGxheW91dCA9ICJ0cmVlMiIsCiAgZWRnZS5sYWJlbC5jZXggPSAxLjUpCgpwbG90X2xjc20oCiAgbGF2YWFuX29iamVjdCA9IGJpdmFyaWF0ZUxDU01fZml0LAogIGxjc20gPSAiYml2YXJpYXRlIiwKICBsYXZhYW5fc3ludGF4ID0gYml2YXJpYXRlTENTTV9zeW50YXgpCmBgYAoKIyMgUGxvdCBUcmFqZWN0b3JpZXMKCmBgYHtyfQpwbG90X3RyYWplY3RvcmllcygKICBkYXRhX2JpX2xjc20sCiAgaWRfdmFyID0gImlkIiwKICB2YXJfbGlzdCA9IGMoInkxIiwgInkyIiwgInkzIiwgInk0IiwgInk1IiwKICAgICAgICAgICAgICAgInk2IiwgInk3IiwgInk4IiwgInk5IiwgInkxMCIpLAogIHhsYWIgPSAiVGltZSIsCiAgeWxhYiA9ICJZIFNjb3JlIiwKICBjb25uZWN0X21pc3NpbmcgPSBGQUxTRSkKYGBgCgojIENyb3NzLUxhZ2dlZCBQYW5lbCBNb2RlbCB7I2NscG19CgojIyBNb2RlbCBTeW50YXgKCmBgYHtyfQpjbHBtX3N5bnRheCA8LSAnCiAgIyBBdXRvcmVncmVzc2l2ZSBQYXRocwogIHQ0IH4gdDMKICB0MyB+IHQyCiAgdDIgfiB0MQogIAogIGM0IH4gYzMKICBjMyB+IGMyCiAgYzIgfiBjMQogIAogICMgQ29uY3VycmVudCBDb3ZhcmlhbmNlcwogIHQxIH5+IGMxCiAgdDIgfn4gYzIKICB0MyB+fiBjMwogIHQ0IH5+IGM0CiAgCiAgIyBDcm9zcy1MYWdnZWQgUGF0aHMKICB0NCB+IGMzCiAgdDMgfiBjMgogIHQyIH4gYzEKICAKICBjNCB+IHQzCiAgYzMgfiB0MgogIGMyIH4gdDEKJwpgYGAKCiMjIEZpdCB0aGUgTW9kZWwKCmBgYHtyfQpjbHBtX2ZpdCA8LSBzZW0oCiAgY2xwbV9zeW50YXgsCiAgZGF0YSA9IERlbW8uZ3Jvd3RoLAogIG1pc3NpbmcgPSAiTUwiLAogIGVzdGltYXRvciA9ICJNTFIiLAogIG1lYW5zdHJ1Y3R1cmUgPSBUUlVFLAogIHN0ZC5sdiA9IFRSVUUsCiAgZml4ZWQueCA9IEZBTFNFLAogIGVtLmgxLml0ZXIubWF4ID0gMTAwMDAwKQpgYGAKCiMjIFN1bW1hcnkgT3V0cHV0CgpgYGB7cn0Kc3VtbWFyeSgKICBjbHBtX2ZpdCwKICBmaXQubWVhc3VyZXMgPSBUUlVFLAogIHN0YW5kYXJkaXplZCA9IFRSVUUsCiAgcnNxdWFyZSA9IFRSVUUpCmBgYAoKIyMgRXN0aW1hdGVzIG9mIE1vZGVsIEZpdAoKYGBge3J9CmZpdE1lYXN1cmVzKAogIGNscG1fZml0LAogIGZpdC5tZWFzdXJlcyA9IGMoCiAgICAiY2hpc3EiLCAiZGYiLCAicHZhbHVlIiwKICAgICJjaGlzcS5zY2FsZWQiLCAiZGYuc2NhbGVkIiwgInB2YWx1ZS5zY2FsZWQiLAogICAgImNoaXNxLnNjYWxpbmcuZmFjdG9yIiwKICAgICJiYXNlbGluZS5jaGlzcSIsImJhc2VsaW5lLmRmIiwiYmFzZWxpbmUucHZhbHVlIiwKICAgICJybXNlYSIsICJjZmkiLCAidGxpIiwgInNybXIiLAogICAgInJtc2VhLnJvYnVzdCIsICJjZmkucm9idXN0IiwgInRsaS5yb2J1c3QiKSkKYGBgCgojIyBSZXNpZHVhbHMgb2YgT2JzZXJ2ZWQgdnMuIE1vZGVsLUltcGxpZWQgQ29ycmVsYXRpb24gTWF0cml4CgpgYGB7cn0KcmVzaWR1YWxzKAogIGNscG1fZml0LAogIHR5cGUgPSAiY29yIikKYGBgCgojIyBNb2RpZmljYXRpb24gSW5kaWNlcwoKYGBge3J9Cm1vZGlmaWNhdGlvbmluZGljZXMoCiAgY2xwbV9maXQsCiAgc29ydC4gPSBUUlVFKQpgYGAKCiMjIFBhdGggRGlhZ3JhbQoKYGBge3J9CnNlbVBhdGhzKAogIGNscG1fZml0LAogIHdoYXQgPSAiU3RkLmFsbCIsCiAgbGF5b3V0ID0gInRyZWUyIiwKICBlZGdlLmxhYmVsLmNleCA9IDEuNSkKYGBgCgojIFJhbmRvbSBJbnRlcmNlcHQgQ3Jvc3MtTGFnZ2VkIFBhbmVsIE1vZGVsIHsjcmljbHBtfQoKIyMgTW9kZWwgU3ludGF4CgojIyMgQWJicmV2aWF0ZWQKCkFkYXB0ZWQgZnJvbSBNdWxkZXIgJiBIYW1ha2VyICgyMDIxKTogaHR0cHM6Ly9kb2kub3JnLzEwLjEwODAvMTA3MDU1MTEuMjAyMC4xNzg0NzM4CgpodHRwczovL2plcm9lbmRtdWxkZXIuZ2l0aHViLmlvL1JJLUNMUE0vbGF2YWFuLmh0bWwgKGFyY2hpdmVkIGF0IGh0dHBzOi8vcGVybWEuY2MvMks2QS1XVUpRKQoKYGBge3J9CnJpY2xwbTFfc3ludGF4IDwtICcKICAjIFJhbmRvbSBJbnRlcmNlcHRzCiAgdCA9fiAxKnQxICsgMSp0MiArIDEqdDMgKyAxKnQ0CiAgYyA9fiAxKmMxICsgMSpjMiArIDEqYzMgKyAxKmM0CiAgCiAgIyBDcmVhdGUgV2l0aGluLVBlcnNvbiBDZW50ZXJlZCBWYXJpYWJsZXMKICB3dDEgPX4gMSp0MQogIHd0MiA9fiAxKnQyCiAgd3QzID1+IDEqdDMKICB3dDQgPX4gMSp0NAogIAogIHdjMSA9fiAxKmMxCiAgd2MyID1+IDEqYzIKICB3YzMgPX4gMSpjMwogIHdjNCA9fiAxKmM0CiAgCiAgIyBBdXRvcmVncmVzc2l2ZSBQYXRocwogIHd0NCB+IHd0MwogIHd0MyB+IHd0MgogIHd0MiB+IHd0MQogIAogIHdjNCB+IHdjMwogIHdjMyB+IHdjMgogIHdjMiB+IHdjMQogIAogICMgQ29uY3VycmVudCBDb3ZhcmlhbmNlcwogIHd0MSB+fiB3YzEKICB3dDIgfn4gd2MyCiAgd3QzIH5+IHdjMwogIHd0NCB+fiB3YzQKICAKICAjIENyb3NzLUxhZ2dlZCBQYXRocwogIHd0NCB+IHdjMwogIHd0MyB+IHdjMgogIHd0MiB+IHdjMQogIAogIHdjNCB+IHd0MwogIHdjMyB+IHd0MgogIHdjMiB+IHd0MQogIAogICMgVmFyaWFuY2UgYW5kIENvdmFyaWFuY2Ugb2YgUmFuZG9tIEludGVyY2VwdHMKICB0IH5+IHQKICBjIH5+IGMKICB0IH5+IGMKICAKICAjIFZhcmlhbmNlcyBvZiBXaXRoaW4tUGVyc29uIENlbnRlcmVkIFZhcmlhYmxlcwogIHd0MSB+fiB3dDEKICB3dDIgfn4gd3QyCiAgd3QzIH5+IHd0MwogIHd0NCB+fiB3dDQKICAKICB3YzEgfn4gd2MxCiAgd2MyIH5+IHdjMgogIHdjMyB+fiB3YzMKICB3YzQgfn4gd2M0CicKYGBgCgojIyMgRnVsbAoKQWRhcHRlZCBmcm9tIE11bmQgJiBOZXN0bGVyICgyMDE3KTogaHR0cHM6Ly9vc2YuaW8vYTRkaGsKCmBgYHtyfQpyaWNscG0yX3N5bnRheCA8LSAnCiAgIyBSYW5kb20gSW50ZXJjZXB0cwogIHQgPX4gMSp0MSArIDEqdDIgKyAxKnQzICsgMSp0NAogIGMgPX4gMSpjMSArIDEqYzIgKyAxKmMzICsgMSpjNAogIAogICMgQ3JlYXRlIFdpdGhpbi1QZXJzb24gQ2VudGVyZWQgVmFyaWFibGVzCiAgd3QxID1+IDEqdDEKICB3dDIgPX4gMSp0MgogIHd0MyA9fiAxKnQzCiAgd3Q0ID1+IDEqdDQKICAKICB3YzEgPX4gMSpjMQogIHdjMiA9fiAxKmMyCiAgd2MzID1+IDEqYzMKICB3YzQgPX4gMSpjNAogIAogICMgQXV0b3JlZ3Jlc3NpdmUgUGF0aHMKICB3dDQgfiB3dDMKICB3dDMgfiB3dDIKICB3dDIgfiB3dDEKICAKICB3YzQgfiB3YzMKICB3YzMgfiB3YzIKICB3YzIgfiB3YzEKICAKICAjIENvbmN1cnJlbnQgQ292YXJpYW5jZXMKICB3dDEgfn4gd2MxCiAgd3QyIH5+IHdjMgogIHd0MyB+fiB3YzMKICB3dDQgfn4gd2M0CiAgCiAgIyBDcm9zcy1MYWdnZWQgUGF0aHMKICB3dDQgfiB3YzMKICB3dDMgfiB3YzIKICB3dDIgfiB3YzEKICAKICB3YzQgfiB3dDMKICB3YzMgfiB3dDIKICB3YzIgfiB3dDEKICAKICAjIFZhcmlhbmNlIGFuZCBDb3ZhcmlhbmNlIG9mIFJhbmRvbSBJbnRlcmNlcHRzCiAgdCB+fiB0CiAgYyB+fiBjCiAgdCB+fiBjCiAgCiAgIyBWYXJpYW5jZXMgb2YgV2l0aGluLVBlcnNvbiBDZW50ZXJlZCBWYXJpYWJsZXMKICB3dDEgfn4gd3QxCiAgd3QyIH5+IHd0MgogIHd0MyB+fiB3dDMKICB3dDQgfn4gd3Q0CiAgCiAgd2MxIH5+IHdjMQogIHdjMiB+fiB3YzIKICB3YzMgfn4gd2MzCiAgd2M0IH5+IHdjNAogIAogICMgRml4IEVycm9yIFZhcmlhbmNlcyBvZiBPYnNlcnZlZCBWYXJpYWJsZXMgdG8gWmVybwogIHQxIH5+IDAqdDEKICB0MiB+fiAwKnQyCiAgdDMgfn4gMCp0MwogIHQ0IH5+IDAqdDQKICAKICBjMSB+fiAwKmMxCiAgYzIgfn4gMCpjMgogIGMzIH5+IDAqYzMKICBjNCB+fiAwKmM0CiAgCiAgIyBGaXggdGhlIENvdmFyaWFuY2VzIEJldHdlZW4gdGhlIFJhbmRvbSBJbnRlcmNlcHRzIGFuZCB0aGUgTGF0ZW50cyBhdCBUMSB0byBaZXJvCiAgd3QxIH5+IDAqdAogIHd0MSB+fiAwKmMKICAKICB3YzEgfn4gMCp0CiAgd2MxIH5+IDAqYwogIAogICMgRXN0aW1hdGUgT2JzZXJ2ZWQgSW50ZXJjZXB0cwogIHQxIH4gMQogIHQyIH4gMQogIHQzIH4gMQogIHQ0IH4gMQogIAogIGMxIH4gMQogIGMyIH4gMQogIGMzIH4gMQogIGM0IH4gMQogIAogICMgRml4IHRoZSBNZWFucyBvZiB0aGUgTGF0ZW50cyB0byBaZXJvCiAgd3QxIH4gMCoxCiAgd3QyIH4gMCoxCiAgd3QzIH4gMCoxCiAgd3Q0IH4gMCoxCiAgCiAgd2MxIH4gMCoxCiAgd2MyIH4gMCoxCiAgd2MzIH4gMCoxCiAgd2M0IH4gMCoxCiAgCiAgdCB+IDAqMQogIGMgfiAwKjEKJwpgYGAKCiMjIEZpdCB0aGUgTW9kZWwKCiMjIyBBYmJyZXZpYXRlZAoKYGBge3J9CnJpY2xwbTFfZml0IDwtIGxhdmFhbigKICByaWNscG0xX3N5bnRheCwKICBkYXRhID0gRGVtby5ncm93dGgsCiAgbWlzc2luZyA9ICJNTCIsCiAgZXN0aW1hdG9yID0gIk1MUiIsCiAgbWVhbnN0cnVjdHVyZSA9IFRSVUUsCiAgaW50Lm92LmZyZWUgPSBUUlVFLAogIGZpeGVkLnggPSBGQUxTRSwKICBlbS5oMS5pdGVyLm1heCA9IDEwMDAwMCkKYGBgCgojIyMgRnVsbAoKYGBge3J9CnJpY2xwbTJfZml0IDwtIHNlbSgKICByaWNscG0yX3N5bnRheCwKICBkYXRhID0gRGVtby5ncm93dGgsCiAgbWlzc2luZyA9ICJNTCIsCiAgZXN0aW1hdG9yID0gIk1MUiIsCiAgZml4ZWQueCA9IEZBTFNFLAogIGVtLmgxLml0ZXIubWF4ID0gMTAwMDAwKQpgYGAKCiMjIFN1bW1hcnkgT3V0cHV0CgojIyMgQWJicmV2aWF0ZWQKCmBgYHtyfQpzdW1tYXJ5KAogIHJpY2xwbTFfZml0LAogIGZpdC5tZWFzdXJlcyA9IFRSVUUsCiAgc3RhbmRhcmRpemVkID0gVFJVRSwKICByc3F1YXJlID0gVFJVRSkKYGBgCgojIyMgRnVsbAoKYGBge3J9CnN1bW1hcnkoCiAgcmljbHBtMl9maXQsCiAgZml0Lm1lYXN1cmVzID0gVFJVRSwKICBzdGFuZGFyZGl6ZWQgPSBUUlVFLAogIHJzcXVhcmUgPSBUUlVFKQpgYGAKCiMjIEVzdGltYXRlcyBvZiBNb2RlbCBGaXQKCmBgYHtyfQpmaXRNZWFzdXJlcygKICByaWNscG0xX2ZpdCwKICBmaXQubWVhc3VyZXMgPSBjKAogICAgImNoaXNxIiwgImRmIiwgInB2YWx1ZSIsCiAgICAiY2hpc3Euc2NhbGVkIiwgImRmLnNjYWxlZCIsICJwdmFsdWUuc2NhbGVkIiwKICAgICJjaGlzcS5zY2FsaW5nLmZhY3RvciIsCiAgICAiYmFzZWxpbmUuY2hpc3EiLCJiYXNlbGluZS5kZiIsImJhc2VsaW5lLnB2YWx1ZSIsCiAgICAicm1zZWEiLCAiY2ZpIiwgInRsaSIsICJzcm1yIiwKICAgICJybXNlYS5yb2J1c3QiLCAiY2ZpLnJvYnVzdCIsICJ0bGkucm9idXN0IikpCmBgYAoKIyMgUmVzaWR1YWxzIG9mIE9ic2VydmVkIHZzLiBNb2RlbC1JbXBsaWVkIENvcnJlbGF0aW9uIE1hdHJpeAoKYGBge3J9CnJlc2lkdWFscygKICByaWNscG0xX2ZpdCwKICB0eXBlID0gImNvciIpCmBgYAoKIyMgTW9kaWZpY2F0aW9uIEluZGljZXMKCmBgYHtyfQptb2RpZmljYXRpb25pbmRpY2VzKAogIHJpY2xwbTFfZml0LAogIHNvcnQuID0gVFJVRSkKYGBgCgojIyBJbnRlcm5hbCBDb25zaXN0ZW5jeSBSZWxpYWJpbGl0eQoKYGBge3J9CmNvbXBSZWxTRU0ocmljbHBtMV9maXQpCmBgYAoKIyMgUGF0aCBEaWFncmFtCgpgYGB7cn0Kc2VtUGF0aHMoCiAgcmljbHBtMV9maXQsCiAgd2hhdCA9ICJTdGQuYWxsIiwKICBsYXlvdXQgPSAidHJlZTIiLAogIGVkZ2UubGFiZWwuY2V4ID0gMS41KQpgYGAKCiMgTWVkaWF0aW9uIHsjbWVkaWF0aW9ufQoKIyMgTW9kZWwgU3ludGF4CgpgYGB7cn0KbWVkaWF0aW9uTW9kZWwgPC0gJwojIGRpcmVjdCBlZmZlY3QgKGNQcmltZSkKWSB+IGRpcmVjdCpYCgojIG1lZGlhdG9yCk0gfiBhKlgKWSB+IGIqTQoKIyBpbmRpcmVjdCBlZmZlY3QgPSBhKmIKaW5kaXJlY3QgOj0gYSpiCgojIHRvdGFsIGVmZmVjdCAoYykKdG90YWwgOj0gZGlyZWN0ICsgaW5kaXJlY3QKJwpgYGAKCiMjIEZpdCB0aGUgTW9kZWwKClRvIGdldCBhIHJvYnVzdCBlc3RpbWF0ZSBvZiB0aGUgaW5kaXJlY3QgZWZmZWN0LCB3ZSBvYnRhaW4gYm9vdHN0cmFwcGVkIGVzdGltYXRlcyBmcm9tIDEsMDAwIGJvb3RzdHJhcCBkcmF3cy4KVHlwaWNhbGx5LCB3ZSB3b3VsZCBvYnRhaW4gYm9vdHN0cmFwcGVkIGVzdGltYXRlcyBmcm9tIDEwLDAwMCBib290c3RyYXAgZHJhd3MsIGJ1dCB0aGlzIGV4YW1wbGUgdXNlcyBvbmx5IDEsMDAwIGJvb3RzdHJhcCBkcmF3cyBmb3IgYSBzaG9ydGVyIHJ1bnRpbWUuCgpgYGB7cn0KbWVkaWF0aW9uRml0IDwtIHNlbSgKICBtZWRpYXRpb25Nb2RlbCwKICBkYXRhID0gbXlkYXRhLAogIHNlID0gImJvb3RzdHJhcCIsCiAgYm9vdHN0cmFwID0gMTAwMCwgIyBnZW5lcmFsbHkgdXNlIDEwLDAwMCBib290c3RyYXAgZHJhd3M7IHRoaXMgZXhhbXBsZSB1c2VzIDEsMDAwIGZvciBzcGVlZAogIHBhcmFsbGVsID0gIm11bHRpY29yZSIsICMgcGFyYWxsZWxpemF0aW9uIGZvciBzcGVlZDogdXNlICJtdWx0aWNvcmUiIGZvciBNYWMvTGludXg7ICJzbm93IiBmb3IgUEMKICBpc2VlZCA9IDUyMjQyLCAjIGZvciByZXByb2R1Y2liaWxpdHkKICBtaXNzaW5nID0gIk1MIiwKICBlc3RpbWF0b3IgPSAiTUwiLAogIHN0ZC5sdiA9IFRSVUUsCiAgZml4ZWQueCA9IEZBTFNFKQpgYGAKCiMjIFN1bW1hcnkgT3V0cHV0CgpgYGB7cn0Kc3VtbWFyeSgKICBtZWRpYXRpb25GaXQsCiAgZml0Lm1lYXN1cmVzID0gVFJVRSwKICBzdGFuZGFyZGl6ZWQgPSBUUlVFLAogIHJzcXVhcmUgPSBUUlVFKQpgYGAKCiMjIFBhcmFtZXRlciBFc3RpbWF0ZXMKCiMjIyBCaWFzLUNvcnJlY3RlZCBCb290c3RyYXAKCkFkanVzdGVkIGJvb3RzdHJhcCBwZXJjZW50aWxlIChCQ2EpIG1ldGhvZCwgYnV0IHdpdGggbm8gY29ycmVjdGlvbiBmb3IgYWNjZWxlcmF0aW9uIChvbmx5IGZvciBiaWFzKToKCmBgYHtyfQptZWRpYXRpb25GaXRfZXN0aW1hdGVzX2JjYSA8LSBwYXJhbWV0ZXJFc3RpbWF0ZXMoCiAgbWVkaWF0aW9uRml0LAogIGJvb3QuY2kudHlwZSA9ICJiY2Euc2ltcGxlIiwKICBzdGFuZGFyZGl6ZWQgPSBUUlVFKQoKbWVkaWF0aW9uRml0X2VzdGltYXRlcyA8LSBtZWRpYXRpb25GaXRfZXN0aW1hdGVzX2JjYQoKbWVkaWF0aW9uRml0X2VzdGltYXRlc19iY2EKYGBgCgojIyMgUGVyY2VudGlsZSBCb290c3RyYXAKCmBgYHtyfQptZWRpYXRpb25GaXRfZXN0aW1hdGVzX3BlcmMgPC0gcGFyYW1ldGVyRXN0aW1hdGVzKAogIG1lZGlhdGlvbkZpdCwKICBib290LmNpLnR5cGUgPSAicGVyYyIsCiAgc3RhbmRhcmRpemVkID0gVFJVRSkKCm1lZGlhdGlvbkZpdF9lc3RpbWF0ZXNfcGVyYwpgYGAKCiMjIEluZGlyZWN0IEVmZmVjdAoKIyMjIFBhcmFtZXRlciBFc3RpbWF0ZQoKQmlhcy1Db3JyZWN0ZWQgQm9vdHN0cmFwOgoKYGBge3J9Cm1lZGlhdGlvbkZpdF9lc3RpbWF0ZXNfYmNhICU+JSAKICBmaWx0ZXIobGFiZWwgPT0gImluZGlyZWN0IikKYGBgCgpQZXJjZW50aWxlIEJvb3RzdHJhcDoKCmBgYHtyfQptZWRpYXRpb25GaXRfZXN0aW1hdGVzX3BlcmMgJT4lIAogIGZpbHRlcihsYWJlbCA9PSAiaW5kaXJlY3QiKQpgYGAKCiMjIyBFZmZlY3QgU2l6ZQoKIyMjIyBTdGFuZGFyZGl6ZWQgRXN0aW1hdGUgKCRcYmV0YSQpCgokJApcYmV0YShhYikgPSBhYiBcY2RvdCBcZnJhY3tTRF9cdGV4dHtZfX17U0RfXHRleHR7WH19CiQkCgpgYGB7cn0KbWVkaWF0aW9uRml0X2luZGlyZWN0IDwtIG1lZGlhdGlvbkZpdF9lc3RpbWF0ZXMgJT4lIAogIGZpbHRlcihsYWJlbCA9PSAiaW5kaXJlY3QiKSAlPiUgCiAgc2VsZWN0KHN0ZC5hbGwpICU+JSAKICBhcy5udW1lcmljCgptZWRpYXRpb25GaXRfaW5kaXJlY3QKYGBgCgojIyMjIFByb3BvcnRpb24gTWVkaWF0ZWQgKCpQKjxzdWI+Kk0qPC9zdWI+KSB7I3Byb3BvcnRpb25NZWRpYXRlZH0KCiQkClBfTSA9IFxmcmFje2FifXtjfSA9IFxmcmFje2FifXtjJyArIGFifQokJAoKRWZmZWN0IHNpemU6IFByb3BvcnRpb24gbWVkaWF0ZWQgKCpQKjxzdWI+Kk0qPC9zdWI+KTsgaS5lLiwgdGhlIHByb3BvcnRpb24gb2YgdGhlIHRvdGFsIGVmZmVjdCB0aGF0IGlzIG1lZGlhdGVkOyBjYWxjdWxhdGVkIGJ5IHRoZSBtYWduaXR1ZGUgb2YgdGhlIGluZGlyZWN0IGVmZmVjdCBkaXZpZGVkIGJ5IHRoZSBtYWduaXR1ZGUgb2YgdGhlIHRvdGFsIGVmZmVjdDoKCmBgYHtyfQptZWRpYXRpb25GaXRfdG90YWwgPC0gbWVkaWF0aW9uRml0X2VzdGltYXRlcyAlPiUgCiAgZmlsdGVyKGxhYmVsID09ICJ0b3RhbCIpICU+JSAKICBzZWxlY3Qoc3RkLmFsbCkgJT4lIAogIGFzLm51bWVyaWMKCm1lZGlhdGlvbkZpdF9wbSA8LSBtZWRpYXRpb25GaXRfaW5kaXJlY3QgLyBtZWRpYXRpb25GaXRfdG90YWwKbWVkaWF0aW9uRml0X3BtCmBgYAoKSW4gdGhpcyBjYXNlLCB0aGUgZGlyZWN0IGVmZmVjdCBhbmQgaW5kaXJlY3QgZWZmZWN0IGhhdmUgb3Bwb3NpdGUgc2lnbnMgKG5lZ2F0aXZlIGFuZCBwb3NpdGl2ZSwgcmVzcGVjdGl2ZWx5KS4KVGhpcyBpcyBjYWxsZWQgKmluY29uc2lzdGVudCBtZWRpYXRpb24qLCBhbmQgcmVuZGVycyB0aGUgZXN0aW1hdGUgb2YgcHJvcG9ydGlvbiBtZWRpYXRlZCBub3QgYSBtZWFuaW5nZnVsIGVzdGltYXRlIG9mIGVmZmVjdCBzaXplICh3aGljaCBleHBsYWlucyB3aHkgaXQgdGhlIGVzdGltYXRlIGV4Y2VlZHMgMS4wOyBGYWlyY2hpbGQgJiBNY0RhbmllbCwgMjAxNykuCgojIyMjIFByb3BvcnRpb24gb2YgVmFyaWFuY2UgaW4gWSBUaGF0IGlzIEV4cGxhaW5lZCBieSB0aGUgSW5kaXJlY3QgRWZmZWN0ICgqUio8c3VwPjI8L3N1cD48c3ViPm1lZGlhdGVkPC9zdWI+KSB7I3JTcXVhcmVkTWVkaWF0ZWR9CgpGb3JtdWxhcyBmcm9tIExhY2hvd2ljeiBldCBhbC4gKDIwMTgpOgoKJCQKXGJlZ2lue2FsaWduZWR9CiAgUl4yX1x0ZXh0e21lZGlhdGVkfSAmPSByXjJfe1x0ZXh0e01ZfX0gLSAoUl4yX3tcdGV4dHtZfSBcY2RvdCBcdGV4dHtNWH19IC0gcl4yX3tcdGV4dHtYWX19KSBcXAogICY9IChcYmV0YV4yX3tcdGV4dHtZTX0gXGNkb3QgXHRleHR7WH19ICsgXGJldGFfe1x0ZXh0e1lYfSBcY2RvdCBcdGV4dHtNfX0gXGNkb3QgXGJldGFfe1x0ZXh0e01YfX0pIF4yIC0gW1xiZXRhXjJfe1x0ZXh0e1lYfX0gKyBcYmV0YV4yX3tcdGV4dHtZTX0gXGNkb3QgXHRleHR7WH19KDEgLSBcYmV0YV4yX3tcdGV4dHtNWH19KSAtIFxiZXRhXjJfe1x0ZXh0e1lYfX1dClxlbmR7YWxpZ25lZH0KJCQKCmBgYHtyfQpyWFkgPC0gYXMubnVtZXJpYyhjb3IudGVzdCgKICB+IFggKyBZLAogIGRhdGEgPSBteWRhdGEKKSRlc3RpbWF0ZSkKCnJNWSA8LSBhcy5udW1lcmljKGNvci50ZXN0KAogIH4gTSArIFksCiAgZGF0YSA9IG15ZGF0YQopJGVzdGltYXRlKQoKUnNxdWFyZWRZbXggPC0gc3VtbWFyeShsbSgKICBZIH4gTSArIFgsCiAgZGF0YSA9IG15ZGF0YSkpJHIuc3F1YXJlZAoKUnNxdWFyZWRNZWQxIDwtIChyTVleMikgLSAoUnNxdWFyZWRZbXggLSAoclhZXjIpKQpSc3F1YXJlZE1lZDEKCmJldGFZTWdpdmVuWCA8LSBtZWRpYXRpb25GaXRfZXN0aW1hdGVzICU+JSAKICBmaWx0ZXIobGFiZWwgPT0gImIiKSAlPiUgCiAgc2VsZWN0KHN0ZC5hbGwpICU+JSAKICBhcy5udW1lcmljCgpiZXRhWVhnaXZlbk0gPC0gbWVkaWF0aW9uRml0X2VzdGltYXRlcyAlPiUgCiAgZmlsdGVyKGxhYmVsID09ICJkaXJlY3QiKSAlPiUgCiAgc2VsZWN0KHN0ZC5hbGwpICU+JSAKICBhcy5udW1lcmljCgpiZXRhTVggPC0gbWVkaWF0aW9uRml0X2VzdGltYXRlcyAlPiUgCiAgZmlsdGVyKGxhYmVsID09ICJhIikgJT4lIAogIHNlbGVjdChzdGQuYWxsKSAlPiUgCiAgYXMubnVtZXJpYwoKYmV0YVlYIDwtIGFzLm51bWVyaWMoY29yLnRlc3QoCiAgfiBYICsgWSwKICBkYXRhID0gbXlkYXRhCikkZXN0aW1hdGUpCgpSc3F1YXJlZE1lZDIgPC0gKChiZXRhWU1naXZlblggKyAoYmV0YVlYZ2l2ZW5NICogYmV0YU1YKSleMikgLSAoKGJldGFZWF4yKSArIChiZXRhWU1naXZlblheMikqKDEgLSAoYmV0YU1YXjIpKSAtIChiZXRhWVheMikpClJzcXVhcmVkTWVkMgpgYGAKCiMjIyMgVGhlIFByb3BvcnRpb24gb2YgVmFyaWFuY2UgaW4gWSBUaGF0IGlzIEFjY291bnRlZCBmb3IgSm9pbnRseSBieSBNIGFuZCBYICh1cHNpbG9uOyAkdiQpIHsjdXBzaWxvbn0KCkZvcm11bGFzIGZyb20gTGFjaG93aWN6IGV0IGFsLiAoMjAxOCk6CgokJApcYmVnaW57YWxpZ25lZH0KICB2ICY9IChyX3tcdGV4dHtZTX19IC0gXGJldGFfe1x0ZXh0e01YfX0gXGNkb3QgXGJldGFeMl97XHRleHR7WVh9IFxjZG90IFx0ZXh0e019fSkgXiAyIC0gKFJeMl97XHRleHR7WX0gXGNkb3QgXHRleHR7TVh9fSAtIHJeMl97XHRleHR7WVh9fSlcXAogICY9IFxiZXRhXjJfYSBcY2RvdCBcYmV0YV4yX2IKXGVuZHthbGlnbmVkfQokJAoKd2hlcmUgJGEkIGlzIHRoZSAkYSQgcGF0aCAoJFxiZXRhXjJfe1x0ZXh0e01YfX0kKSwgYW5kICRiJCBpcyB0aGUgJGIkIHBhdGggKCRcYmV0YV4yX3tcdGV4dHtZTX0gXGNkb3QgXHRleHR7WH19JCkuCgpUaGUgZXN0aW1hdGUgY29ycmVjdHMgZm9yIHNwdXJpb3VzIGNvcnJlbGF0aW9uIGluZHVjZWQgYnkgdGhlIG9yZGVyaW5nIG9mIHZhcmlhYmxlcy4KCmBgYHtyfQp1cHNpbG9uMSA8LSAoKHJNWSAtIChiZXRhTVggKiAoYmV0YVlYZ2l2ZW5NXjIpKSleMikgLSAoUnNxdWFyZWRZbXggLSAoclhZXjIpKQp1cHNpbG9uMQoKdXBzaWxvbjIgPC0gKGJldGFZTWdpdmVuWF4yKSAtIChSc3F1YXJlZFlteCAtIChyWFleMikpCnVwc2lsb24yCgp1cHNpbG9uMyA8LSBtZWRpYXRpb25GaXRfaW5kaXJlY3QgXiAyCnVwc2lsb24zCgp1cHNpbG9uKAogIHggPSBteWRhdGEkWCwKICBtZWRpYXRvciA9IG15ZGF0YSRNLAogIGR2ID0gbXlkYXRhJFksCiAgYm9vdHN0cmFwID0gRkFMU0UKKQpgYGAKCiMjIyMgUmF0aW8gb2YgdGhlIEluZGlyZWN0IEVmZmVjdCBSZWxhdGl2ZSB0byBJdHMgTWF4aW11bSBQb3NzaWJsZSBWYWx1ZSBpbiB0aGUgRGF0YSAoJFxrYXBwYV4yJCkgeyNrYXBwYVNxdWFyZWR9CgokJApca2FwcGFeMiA9IFxmcmFje2FifXtcdGV4dHtNQVh9KGFiKX0KJCQKCkthcHBhLXNxdWFyZWQgKCRca2FwcGFeMiQpIGlzIHRoZSByYXRpbyBvZiB0aGUgaW5kaXJlY3QgZWZmZWN0IHJlbGF0aXZlIHRvIGl0cyBtYXhpbXVtIHBvc3NpYmxlIHZhbHVlIGluIHRoZSBkYXRhIGdpdmVuIHRoZSBvYnNlcnZlZCB2YXJpYWJpbGl0eSBvZiBYLCBZLCBhbmQgTSBhbmQgdGhlaXIgaW50ZXJjb3JyZWxhdGlvbnMgaW4gdGhlIGRhdGEuClRoaXMgZXN0aW1hdGUgaXMgbm8gbG9uZ2VyIHJlY29tbWVuZGVkIChXZW4gJiBGYW4sIDIwMTUpLgoKIyMjIyBPdGhlciBFZmZlY3QgU2l6ZXMKCmBgYHtyfQptZWRpYXRpb24oCiAgeCA9IG15ZGF0YSRYLAogIG1lZGlhdG9yID0gbXlkYXRhJE0sCiAgZHYgPSBteWRhdGEkWSwKICBib290c3RyYXAgPSBGQUxTRQopCmBgYAoKIyMgRXN0aW1hdGVzIG9mIE1vZGVsIEZpdAoKVGhlIG1vZGVsIGlzIHNhdHVyYXRlZCBiZWNhdXNlIGl0IGhhcyBhcyBtYW55IGVzdGltYXRlZCBwYXJhbWV0ZXJzIGFzIHRoZXJlIGFyZSBkYXRhIHBvaW50cyAoaS5lLiwgaW4gdGVybXMgb2YgbWVhbnMsIHZhcmlhbmNlcywgYW5kIGNvdmFyaWFuY2VzKSwgc28gaXQgaGFzIHplcm8gZGVncmVlcyBvZiBmcmVlZG9tLgpCZWNhdXNlIHRoZSBtb2RlbCBpcyBzYXR1cmF0ZWQsIGl0IGhhcyAicGVyZmVjdCIgZml0LgoKYGBge3J9CmZpdE1lYXN1cmVzKAogIG1lZGlhdGlvbkZpdCwKICBmaXQubWVhc3VyZXMgPSBjKAogICAgImNoaXNxIiwgImRmIiwgInB2YWx1ZSIsCiAgICAiYmFzZWxpbmUuY2hpc3EiLCJiYXNlbGluZS5kZiIsImJhc2VsaW5lLnB2YWx1ZSIsCiAgICAicm1zZWEiLCAiY2ZpIiwgInRsaSIsICJzcm1yIikpCmBgYAoKIyMgUmVzaWR1YWxzIG9mIE9ic2VydmVkIHZzLiBNb2RlbC1JbXBsaWVkIENvcnJlbGF0aW9uIE1hdHJpeAoKYGBge3J9CnJlc2lkdWFscyhtZWRpYXRpb25GaXQsIHR5cGUgPSAiY29yIikKYGBgCgojIyBNb2RpZmljYXRpb24gSW5kaWNlcwoKYGBge3J9Cm1vZGlmaWNhdGlvbmluZGljZXMobWVkaWF0aW9uRml0LCBzb3J0LiA9IFRSVUUpCmBgYAoKIyMgSW50ZXJuYWwgQ29uc2lzdGVuY3kgUmVsaWFiaWxpdHkKCmBgYHtyfQpjb21wUmVsU0VNKG1lZGlhdGlvbkZpdCkKYGBgCgojIyBQYXRoIERpYWdyYW0KCmBgYHtyfQpzZW1QYXRocygKICBtZWRpYXRpb25GaXQsCiAgd2hhdCA9ICJTdGQuYWxsIiwKICBsYXlvdXQgPSAidHJlZTIiLAogIGVkZ2UubGFiZWwuY2V4ID0gMS41KQpgYGAKCiMgTW9kZXJhdGlvbiB7I21vZGVyYXRpb259CgpgYGB7cn0Kc3RhdGVzIDwtIGFzLmRhdGEuZnJhbWUoc3RhdGUueDc3KQpuYW1lcyhzdGF0ZXMpW3doaWNoKG5hbWVzKHN0YXRlcykgPT0gIkhTIEdyYWQiKV0gPC0gIkhTLkdyYWQiCnN0YXRlcyRJbmNvbWVfcmVzY2FsZWQgPC0gc3RhdGVzJEluY29tZS8xMDAKYGBgCgojIyBNZWFuIENlbnRlciBQcmVkaWN0b3JzCgpNYWtlIHN1cmUgdG8gbWVhbi1jZW50ZXIgb3Igb3J0aG9nb25hbGl6ZSBwcmVkaWN0b3JzIGJlZm9yZSBjb21wdXRpbmcgdGhlIGludGVyYWN0aW9uIHRlcm0uCgpgYGB7cn0Kc3RhdGVzJElsbGl0ZXJhY3lfY2VudGVyZWQgPC0gc2NhbGUoc3RhdGVzJElsbGl0ZXJhY3ksIHNjYWxlID0gRkFMU0UpCnN0YXRlcyRNdXJkZXJfY2VudGVyZWQgPC0gc2NhbGUoc3RhdGVzJE11cmRlciwgc2NhbGUgPSBGQUxTRSkKYGBgCgojIyBDb21wdXRlIEludGVyYWN0aW9uIFRlcm0KCmBgYHtyfQpzdGF0ZXMkaW50ZXJhY3Rpb24gPC0gc3RhdGVzJElsbGl0ZXJhY3lfY2VudGVyZWQgKiBzdGF0ZXMkTXVyZGVyX2NlbnRlcmVkCmBgYAoKIyMgTW9kZWwgU3ludGF4CgpgYGB7cn0KbW9kZXJhdGlvbk1vZGVsIDwtICcKSW5jb21lX3Jlc2NhbGVkIH4gSWxsaXRlcmFjeV9jZW50ZXJlZCArIE11cmRlcl9jZW50ZXJlZCArIGludGVyYWN0aW9uICsgSFMuR3JhZAonCmBgYAoKIyMgRml0IHRoZSBNb2RlbAoKYGBge3J9Cm1vZGVyYXRpb25GaXQgPC0gc2VtKAogIG1vZGVyYXRpb25Nb2RlbCwKICBkYXRhID0gc3RhdGVzLAogIG1pc3NpbmcgPSAiTUwiLAogIGVzdGltYXRvciA9ICJNTFIiLAogIHN0ZC5sdiA9IFRSVUUsCiAgZml4ZWQueCA9IEZBTFNFKQpgYGAKCiMjIFN1bW1hcnkgT3V0cHV0CgpgYGB7cn0Kc3VtbWFyeSgKICBtb2RlcmF0aW9uRml0LAogIGZpdC5tZWFzdXJlcyA9IFRSVUUsCiAgc3RhbmRhcmRpemVkID0gVFJVRSwKICByc3F1YXJlID0gVFJVRSkKYGBgCgojIyBFc3RpbWF0ZXMgb2YgTW9kZWwgRml0CgpUaGUgbW9kZWwgaXMgc2F0dXJhdGVkIGJlY2F1c2UgaXQgaGFzIGFzIG1hbnkgZXN0aW1hdGVkIHBhcmFtZXRlcnMgYXMgdGhlcmUgYXJlIGRhdGEgcG9pbnRzIChpLmUuLCBpbiB0ZXJtcyBvZiBtZWFucywgdmFyaWFuY2VzLCBhbmQgY292YXJpYW5jZXMpLCBzbyBpdCBoYXMgemVybyBkZWdyZWVzIG9mIGZyZWVkb20uCkJlY2F1c2UgdGhlIG1vZGVsIGlzIHNhdHVyYXRlZCwgaXQgaGFzICJwZXJmZWN0IiBmaXQuCgpgYGB7cn0KZml0TWVhc3VyZXMoCiAgbW9kZXJhdGlvbkZpdCwKICBmaXQubWVhc3VyZXMgPSBjKAogICAgImNoaXNxIiwgImRmIiwgInB2YWx1ZSIsCiAgICAiYmFzZWxpbmUuY2hpc3EiLCJiYXNlbGluZS5kZiIsImJhc2VsaW5lLnB2YWx1ZSIsCiAgICAicm1zZWEiLCAiY2ZpIiwgInRsaSIsICJzcm1yIikpCmBgYAoKIyMgUmVzaWR1YWxzIG9mIE9ic2VydmVkIHZzLiBNb2RlbC1JbXBsaWVkIENvcnJlbGF0aW9uIE1hdHJpeAoKYGBge3J9CnJlc2lkdWFscyhtb2RlcmF0aW9uRml0LCB0eXBlID0gImNvciIpCmBgYAoKIyMgTW9kaWZpY2F0aW9uIEluZGljZXMKCmBgYHtyfQptb2RpZmljYXRpb25pbmRpY2VzKG1vZGVyYXRpb25GaXQsIHNvcnQuID0gVFJVRSkKYGBgCgojIyBQYXRoIERpYWdyYW0KCmBgYHtyfQpzZW1QYXRocygKICBtb2RlcmF0aW9uRml0LAogIHdoYXQgPSAiU3RkLmFsbCIsCiAgbGF5b3V0ID0gInRyZWUyIiwKICBlZGdlLmxhYmVsLmNleCA9IDEuNSkKYGBgCgojIyBJbnRlcmFjdGlvbiBQbG90IHsjbW9kZXJhdGlvbkludGVyYWN0aW9uUGxvdH0KCmBgYHtyfQojIENyZWF0ZWQgTW9kZWwtSW1wbGllZCBQcmVkaWN0ZWQgRGF0YSBPYmplY3QKbW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSA8LSBleHBhbmQuZ3JpZCgKICBJbGxpdGVyYWN5X2ZhY3RvciA9IGMoIkxvdyIsIk1pZGRsZSIsIkhpZ2giKSwKICBNdXJkZXJfZmFjdG9yID0gYygiTG93IiwiTWlkZGxlIiwiSGlnaCIpKQoKSWxsaXRlcmFjeV9tZWFuIDwtIG1lYW4oc3RhdGVzJElsbGl0ZXJhY3ksIG5hLnJtID0gVFJVRSkKSWxsaXRlcmFjeV9zZCA8LSBzZChzdGF0ZXMkSWxsaXRlcmFjeSwgbmEucm0gPSBUUlVFKQoKTXVyZGVyX21lYW4gPC0gbWVhbihzdGF0ZXMkTXVyZGVyLCBuYS5ybSA9IFRSVUUpCk11cmRlcl9zZCA8LSBzZChzdGF0ZXMkTXVyZGVyLCBuYS5ybSA9IFRSVUUpCgpJbGxpdGVyYWN5X2NlbnRlcmVkX21lYW4gPC0gbWVhbihzdGF0ZXMkSWxsaXRlcmFjeV9jZW50ZXJlZCwgbmEucm0gPSBUUlVFKQpJbGxpdGVyYWN5X2NlbnRlcmVkX3NkIDwtIHNkKHN0YXRlcyRJbGxpdGVyYWN5X2NlbnRlcmVkLCBuYS5ybSA9IFRSVUUpCgpNdXJkZXJfY2VudGVyZWRfbWVhbiA8LSBtZWFuKHN0YXRlcyRNdXJkZXJfY2VudGVyZWQsIG5hLnJtID0gVFJVRSkKTXVyZGVyX2NlbnRlcmVkX3NkIDwtIHNkKHN0YXRlcyRNdXJkZXJfY2VudGVyZWQsIG5hLnJtID0gVFJVRSkKCm1vZGVsSW1wbGllZFByZWRpY3RlZERhdGEgPC0gbW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSAlPiUKICBtdXRhdGUoCiAgICBJbGxpdGVyYWN5ID0gY2FzZV93aGVuKAogICAgICBJbGxpdGVyYWN5X2ZhY3RvciA9PSAiTG93IiB+IElsbGl0ZXJhY3lfbWVhbiAtIElsbGl0ZXJhY3lfc2QsCiAgICAgIElsbGl0ZXJhY3lfZmFjdG9yID09ICJNaWRkbGUiIH4gSWxsaXRlcmFjeV9tZWFuLAogICAgICBJbGxpdGVyYWN5X2ZhY3RvciA9PSAiSGlnaCIgfiBJbGxpdGVyYWN5X21lYW4gKyBJbGxpdGVyYWN5X3NkCiAgICApLAogICAgSWxsaXRlcmFjeV9jZW50ZXJlZCA9IGNhc2Vfd2hlbigKICAgICAgSWxsaXRlcmFjeV9mYWN0b3IgPT0gIkxvdyIgfiBJbGxpdGVyYWN5X2NlbnRlcmVkX21lYW4gLSBJbGxpdGVyYWN5X2NlbnRlcmVkX3NkLAogICAgICBJbGxpdGVyYWN5X2ZhY3RvciA9PSAiTWlkZGxlIiB+IElsbGl0ZXJhY3lfY2VudGVyZWRfbWVhbiwKICAgICAgSWxsaXRlcmFjeV9mYWN0b3IgPT0gIkhpZ2giIH4gSWxsaXRlcmFjeV9jZW50ZXJlZF9tZWFuICsgSWxsaXRlcmFjeV9jZW50ZXJlZF9zZAogICAgKSwKICAgIE11cmRlciA9IGNhc2Vfd2hlbigKICAgICAgTXVyZGVyX2ZhY3RvciA9PSAiTG93IiB+IE11cmRlcl9tZWFuIC0gTXVyZGVyX3NkLAogICAgICBNdXJkZXJfZmFjdG9yID09ICJNaWRkbGUiIH4gTXVyZGVyX21lYW4sCiAgICAgIE11cmRlcl9mYWN0b3IgPT0gIkhpZ2giIH4gTXVyZGVyX21lYW4gKyBNdXJkZXJfc2QKICAgICksCiAgICBNdXJkZXJfY2VudGVyZWQgPSBjYXNlX3doZW4oCiAgICAgIE11cmRlcl9mYWN0b3IgPT0gIkxvdyIgfiBNdXJkZXJfY2VudGVyZWRfbWVhbiAtIE11cmRlcl9jZW50ZXJlZF9zZCwKICAgICAgTXVyZGVyX2ZhY3RvciA9PSAiTWlkZGxlIiB+IE11cmRlcl9jZW50ZXJlZF9tZWFuLAogICAgICBNdXJkZXJfZmFjdG9yID09ICJIaWdoIiB+IE11cmRlcl9jZW50ZXJlZF9tZWFuICsgTXVyZGVyX2NlbnRlcmVkX3NkCiAgICApLAogICAgaW50ZXJhY3Rpb24gPSBJbGxpdGVyYWN5X2NlbnRlcmVkICogTXVyZGVyX2NlbnRlcmVkLAogICAgSFMuR3JhZCA9IG1lYW4oc3RhdGVzJEhTLkdyYWQsIG5hLnJtID0gVFJVRSksICMgbWVhbiBmb3IgY292YXJpYXRlcwogICAgSW5jb21lX3Jlc2NhbGVkID0gTkEKICApCgpNdXJkZXJfbGFiZWxzIDwtIGZhY3RvcigKICBtb2RlbEltcGxpZWRQcmVkaWN0ZWREYXRhJE11cmRlcl9mYWN0b3IsCiAgbGV2ZWxzID0gYygiSGlnaCIsICJNaWRkbGUiLCAiTG93IiksCiAgbGFiZWxzID0gYygiSGlnaCAoKzEgU0QpIiwgIk1pZGRsZSAobWVhbikiLCAiTG93ICjiiJIxIFNEKSIpKQoKbW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSRJbmNvbWVfcmVzY2FsZWQgPC0gbGF2UHJlZGljdFkoCiAgbW9kZXJhdGlvbkZpdCwKICBuZXdkYXRhID0gbW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSwKICB5bmFtZXMgPSAiSW5jb21lX3Jlc2NhbGVkIgopICU+JSAKICBhcy52ZWN0b3IoKQoKIyBWZXJpZnkgQ29tcHV0YXRpb24gTWFudWFsbHkKbW9kZXJhdGlvbkZpdF9wYXJhbWV0ZXJzIDwtIHBhcmFtZXRlckVzdGltYXRlcyhtb2RlcmF0aW9uRml0KQoKbW9kZXJhdGlvbkZpdF9wYXJhbWV0ZXJzCgppbnRlcmNlcHQgPC0gbW9kZXJhdGlvbkZpdF9wYXJhbWV0ZXJzW3doaWNoKG1vZGVyYXRpb25GaXRfcGFyYW1ldGVycyRsaHMgPT0gIkluY29tZV9yZXNjYWxlZCIgJiBtb2RlcmF0aW9uRml0X3BhcmFtZXRlcnMkb3AgPT0gIn4xIiksICJlc3QiXQpiX0lsbGl0ZXJhY3lfY2VudGVyZWQgPC0gbW9kZXJhdGlvbkZpdF9wYXJhbWV0ZXJzW3doaWNoKG1vZGVyYXRpb25GaXRfcGFyYW1ldGVycyRsaHMgPT0gIkluY29tZV9yZXNjYWxlZCIgJiBtb2RlcmF0aW9uRml0X3BhcmFtZXRlcnMkcmhzID09ICJJbGxpdGVyYWN5X2NlbnRlcmVkIiksICJlc3QiXQpiX011cmRlcl9jZW50ZXJlZCA8LSBtb2RlcmF0aW9uRml0X3BhcmFtZXRlcnNbd2hpY2gobW9kZXJhdGlvbkZpdF9wYXJhbWV0ZXJzJGxocyA9PSAiSW5jb21lX3Jlc2NhbGVkIiAmIG1vZGVyYXRpb25GaXRfcGFyYW1ldGVycyRyaHMgPT0gIk11cmRlcl9jZW50ZXJlZCIpLCAiZXN0Il0KYl9pbnRlcmFjdGlvbiA8LSBtb2RlcmF0aW9uRml0X3BhcmFtZXRlcnNbd2hpY2gobW9kZXJhdGlvbkZpdF9wYXJhbWV0ZXJzJGxocyA9PSAiSW5jb21lX3Jlc2NhbGVkIiAmIG1vZGVyYXRpb25GaXRfcGFyYW1ldGVycyRyaHMgPT0gImludGVyYWN0aW9uIiksICJlc3QiXQpiX0hTLkdyYWQgPC0gbW9kZXJhdGlvbkZpdF9wYXJhbWV0ZXJzW3doaWNoKG1vZGVyYXRpb25GaXRfcGFyYW1ldGVycyRsaHMgPT0gIkluY29tZV9yZXNjYWxlZCIgJiBtb2RlcmF0aW9uRml0X3BhcmFtZXRlcnMkcmhzID09ICJIUy5HcmFkIiksICJlc3QiXQoKbW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSA8LSBtb2RlbEltcGxpZWRQcmVkaWN0ZWREYXRhICU+JQogIG11dGF0ZSgKICAgIEluY29tZV9yZXNjYWxlZF9jYWxjdWxhdGVkTWFudWFsbHkgPSBpbnRlcmNlcHQgKyAoYl9JbGxpdGVyYWN5X2NlbnRlcmVkICogSWxsaXRlcmFjeV9jZW50ZXJlZCkgKyAoYl9NdXJkZXJfY2VudGVyZWQgKiBNdXJkZXJfY2VudGVyZWQpICsgKGJfaW50ZXJhY3Rpb24gKiBpbnRlcmFjdGlvbikgKyAoYl9IUy5HcmFkICogSFMuR3JhZCkpCgojIE1vZGVsLUltcGxpZWQgUHJlZGljdGVkIERhdGEKbW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YQoKIyBQbG90CmdncGxvdCgKICBkYXRhID0gbW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSwKICBtYXBwaW5nID0gYWVzKAogICAgeCA9IElsbGl0ZXJhY3ksCiAgICB5ID0gSW5jb21lX3Jlc2NhbGVkLAogICAgY29sb3IgPSBNdXJkZXJfbGFiZWxzCiAgKQopICsKICBnZW9tX2xpbmUoKSArCiAgbGFicyhjb2xvciA9ICJNdXJkZXIiKQpgYGAKCiMjIFNpbXBsZSBTbG9wZXMgYW5kIFJlZ2lvbnMgb2YgU2lnbmlmaWNhbmNlIHsjbW9kZXJhdGlvblJlZ2lvbnNPZlNpZ25pZmljYW5jZX0KCmh0dHBzOi8vZ2FicmllbGxhamcuZ2l0aHViLmlvL0VQU1ktNTc5LVItQ29va2Jvb2stZm9yLVNFTS93ZWVrNl8xLWxhdmFhbi1sYWItNC1tZWRpYXRlZC1tb2RlcmF0aW9uLW1vZGVyYXRlZC1tZWRpYXRpb24uaHRtbCNzdGVwLTUtam9obnNvbi1uZXltYW4taW50ZXJ2YWwgKGFyY2hpdmVkIGF0IGh0dHBzOi8vcGVybWEuY2MvNlhSNi1aUFNMKQoKYGBge3J9CiMgRmluZCB0aGUgbWluIGFuZCBtYXggdmFsdWVzIG9mIHRoZSBtb2RlcmF0b3IKTXVyZGVyX2NlbnRlcmVkX21pbiA8LSBtaW4obW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSRNdXJkZXJfY2VudGVyZWQsIG5hLnJtID0gVFJVRSkKTXVyZGVyX2NlbnRlcmVkX21heCA8LSBtYXgobW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSRNdXJkZXJfY2VudGVyZWQsIG5hLnJtID0gVFJVRSkKCk11cmRlcl9jZW50ZXJlZF9jdXRvZmYxIDwtIC0xLjUgIyBwaWNrIGFuZCB0aXRyYXRlIGN1dG9mZiB0byBoZWxwIGZpbmQgdGhlIGxvd2VyIGJvdW5kIG9mIHRoZSByZWdpb24gb2Ygc2lnbmlmaWNhbmNlCk11cmRlcl9jZW50ZXJlZF9jdXRvZmYyIDwtIC0xICMgcGljayBhbmQgdGl0cmF0ZSBjdXRvZmYgdG8gaGVscCBmaW5kIHRoZSB1cHBlciBib3VuZCBvZiB0aGUgcmVnaW9uIG9mIHNpZ25pZmljYW5jZQoKTXVyZGVyX2NlbnRlcmVkX3NkIDwtIHNkKG1vZGVsSW1wbGllZFByZWRpY3RlZERhdGEkTXVyZGVyX2NlbnRlcmVkLCBuYS5ybSA9IFRSVUUpCgpNdXJkZXJfY2VudGVyZWRfbG93IDwtIG1lYW4obW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSRNdXJkZXJfY2VudGVyZWQsIG5hLnJtID0gVFJVRSkgLSBzZChtb2RlbEltcGxpZWRQcmVkaWN0ZWREYXRhJE11cmRlcl9jZW50ZXJlZCwgbmEucm0gPSBUUlVFKQpNdXJkZXJfY2VudGVyZWRfbWVhbiA8LSBtZWFuKG1vZGVsSW1wbGllZFByZWRpY3RlZERhdGEkTXVyZGVyX2NlbnRlcmVkLCBuYS5ybSA9IFRSVUUpCk11cmRlcl9jZW50ZXJlZF9oaWdoIDwtIG1lYW4obW9kZWxJbXBsaWVkUHJlZGljdGVkRGF0YSRNdXJkZXJfY2VudGVyZWQsIG5hLnJtID0gVFJVRSkgKyBzZChtb2RlbEltcGxpZWRQcmVkaWN0ZWREYXRhJE11cmRlcl9jZW50ZXJlZCwgbmEucm0gPSBUUlVFKQoKIyBFeHRlbmQgdGhlIG1vZGVyYXRpb24gbW9kZWwgdG8gY29tcHV0ZSB0aGUgc2ltcGxlIHNsb3BlcyBhbmQgY29uZGl0aW9uYWwgZWZmZWN0cyBhdCBzcGVjaWZpYyB2YWx1ZXMgb2YgdGhlIG1vZGVyYXRvcgptb2RlcmF0aW9uTW9kZWxTaW1wbGVTbG9wZXMgPC0gcGFzdGUwKCcKICAjIFJlZ3Jlc3Npb24KICBJbmNvbWVfcmVzY2FsZWQgfiBiMSpJbGxpdGVyYWN5X2NlbnRlcmVkICsgYjIqTXVyZGVyX2NlbnRlcmVkICsgYjMqaW50ZXJhY3Rpb24gKyBiNCpIUy5HcmFkCiAgCiAgIyBTaW1wbGUgU2xvcGVzCiAgU1NfbWluIDo9IGIxICsgYjMgKiAnLCBNdXJkZXJfY2VudGVyZWRfbWluLCAnCiAgU1NfY3V0b2ZmMSA6PSBiMSArIGIzICogJywgTXVyZGVyX2NlbnRlcmVkX2N1dG9mZjEsICcKICBTU19jdXRvZmYyIDo9IGIxICsgYjMgKiAnLCBNdXJkZXJfY2VudGVyZWRfY3V0b2ZmMiwgJwogIFNTX2xvdyA6PSBiMSArIGIzICogJywgTXVyZGVyX2NlbnRlcmVkX2xvdywgJwogIFNTX21lYW4gOj0gYjEgKyBiMyAqICcsIE11cmRlcl9jZW50ZXJlZF9tZWFuLCAnCiAgU1NfaGlnaCA6PSBiMSArIGIzICogJywgTXVyZGVyX2NlbnRlcmVkX2hpZ2gsICcKICBTU19tYXggOj0gYjEgKyBiMyAqICcsIE11cmRlcl9jZW50ZXJlZF9tYXgsICcKJykKCiMgRml0IHRoZSBNb2RlbApzZXQuc2VlZCg1MjI0MikgIyBmb3IgcmVwcm9kdWNpYmlsaXR5Cgptb2RlcmF0aW9uTW9kZWxTaW1wbGVTbG9wZXNfZml0IDwtIHNlbSgKICBtb2RlbCA9IG1vZGVyYXRpb25Nb2RlbFNpbXBsZVNsb3BlcywgCiAgZGF0YSA9IHN0YXRlcywKICBtaXNzaW5nID0gIk1MIiwKICBlc3RpbWF0b3IgPSAiTUwiLAogIHNlID0gImJvb3RzdHJhcCIsCiAgYm9vdHN0cmFwID0gMTAwMCwKICBzdGQubHYgPSBUUlVFLAogIGZpeGVkLnggPSBGQUxTRSkKCnN1bW1hcnkoCiAgbW9kZXJhdGlvbk1vZGVsU2ltcGxlU2xvcGVzX2ZpdCwKICAjZml0Lm1lYXN1cmVzID0gVFJVRSwKICBzdGFuZGFyZGl6ZWQgPSBUUlVFLAogIHJzcXVhcmUgPSBUUlVFKQoKbW9kZXJhdGlvbk1vZGVsU2ltcGxlU2xvcGVzRml0X3BhcmFtZXRlcnMgPC0gcGFyYW1ldGVyRXN0aW1hdGVzKAogIG1vZGVyYXRpb25Nb2RlbFNpbXBsZVNsb3Blc19maXQsCiAgbGV2ZWwgPSAwLjk1LAogIGJvb3QuY2kudHlwZSA9ICJiY2Euc2ltcGxlIikKCm1vZGVyYXRpb25Nb2RlbFNpbXBsZVNsb3Blc0ZpdF9wYXJhbWV0ZXJzCmBgYAoKQSBzaW1wbGUgc2xvcGUgb2YgdGhlIHByZWRpY3RvciBvbiB0aGUgb3V0Y29tZSBpcyBjb25zaWRlcmVkIHNpZ25pZmljYW50IGF0IGEgZ2l2ZW4gbGV2ZWwgb2YgdGhlIG1vZGVyYXRvciBpZiB0aGUgOTUlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgZnJvbSB0aGUgYm9vdHN0cmFwcGVkIGVzdGltYXRlcyBvZiB0aGUgc2ltcGxlIHNsb3BlcyBhdCB0aGF0IGxldmVsIG9mIHRoZSBtb2RlcmF0b3IgKGkuZS4sIFtgY2kubG93ZXJgLGBjaS51cHBlcmBdKSBkb2VzIG5vdCBpbmNsdWRlIHplcm8uCkluIHRoaXMgcGFydGljdWxhciBtb2RlbCwgdGhlIHByZWRpY3RvciAoYElsbGl0ZXJhY3lgKSBpcyBub3Qgc2lnbmlmaWNhbnQgYXQgYW55IG9mIHRoZSBsZXZlbHMgb2YgdGhlIG1vZGVyYXRvciAoYE11cmRlcmApLCBiZWNhdXNlIHRoZSA5NSUgY29uZmlkZW5jZSBpbnRlcnZhbHMgb2YgYWxsIHNpbXBsZSBzbG9wZXMgaW5jbHVkZSB6ZXJvLCBpbiB0aGlzIGNhc2UsIGxpa2VseSBkdWUgdG8gYSBzbWFsbCBzYW1wbGUgc2l6ZSAoJE4gPSA1MCQpIGFuZCB0aGUgcmVzdWx0aW5nIGxvdyBwb3dlci4KCiMjIEpvaG5zb24tTmV5bWFuIFBsb3QgeyNqb2huc29uTmV5bWFuUGxvdH0KCkFzIEkgbm90ZWQgYWJvdmUsIHRoZSBwcmVkaWN0b3IgaXMgbm90IHNpZ25pZmljYW50IGF0IGFueSBsZXZlbHMgb2YgdGhlIG1vZGVyYXRvci4KTmV2ZXJ0aGVsZXNzLCBJIGNyZWF0ZWQgYSBtYWRlIHVwIEpvaG5zb24tTmV5bWFuIHBsb3QgYnkgc3BlY2lmeWluZyB0aGUgKGZpY3RpdGlvdXMpIHJhbmdlIG9mIHNpZ25pZmljYW5jZSwgZm9yIHB1cnBvc2VzIG9mIGRlbW9uc3RyYXRpb24uClRoZSBiYW5kIGFyb3VuZCB0aGUgbGluZSBpbmRpY2F0ZXMgdGhlIDk1JSBjb25maWRlbmNlIGludGVydmFsIG9mIHRoZSBzaW1wbGUgc2xvcGUgb2YgdGhlIHByZWRpY3RvciBvbiB0aGUgb3V0Y29tZSBhcyBhIGZ1bmN0aW9uIG9mIGRpZmZlcmVudCBsZXZlbHMgb2YgdGhlIG1vZGVyYXRvci4KSW4gcmVhbGl0eSAodW5saWtlIGluIHRoaXMgZmljdGl0aW91cyBleGFtcGxlKSwgdGhlIHJlZ2lvbnMgb2Ygc2lnbmlmaWNhbmNlIHdvdWxkIG9ubHkgYmUgcmVnaW9ucyB3aGVyZSB0aGUgOTUlIGNvbmZpZGVuY2UgaW50ZXJ2YWwgb2YgdGhlIHNpbXBsZSBzbG9wZSBkb2VzIG5vdCBpbmNsdWRlIHplcm8uCgpUaGUgc3RhbmRhcmQgZXJyb3Igb2YgdGhlIHNsb3BlIGlzIHRoZSBzcXVhcmUgcm9vdCBvZiB0aGUgdmFyaWFuY2Ugb2YgdGhlIHNsb3BlLgpUaGUgZm9ydW11bGEgZm9yIGNvbXB1dGluZyB0aGUgc3RhbmRhcmQgZXJyb3Igb2YgdGhlIHNsb3BlIGlzIGJhc2VkIG9uIHRoZSBmb3JtdWxhIGZvciBjb21wdXRpbmcgdGhlIHZhcmlhbmNlIG9mIGEgd2VpZ2h0ZWQgc3VtLgoKVGhlIHNsb3BlIG9mIHRoZSBwcmVkaWN0b3Igb24gdGhlIG91dGNvbWUgYXQgZGlmZmVyZW50IGxldmVscyBvZiB0aGUgbW9kZXJhdG9yIGlzIGNhbGN1bGF0ZWQgYXMgKEphY2NhcmQgJiBUdXJpc2ksIDIwMDMpOgoKJCQKXHRleHR7c2xvcGV9X1x0ZXh0e3ByZWRpY3Rvcn0gPSBiXzEgKyBiXzMgXGNkb3QgWgokJAoKVGhlIHN0YW5kYXJkIGVycm9yIG9mIHRoZSBzbG9wZSBvZiB0aGUgcHJlZGljdG9yIG9uIHRoZSBvdXRjb21lIGF0IGRpZmZlcmVudCBsZXZlbHMgb2YgdGhlIG1vZGVyYXRvciBpcyBjYWxjdWxhdGVkIGFzIChodHRwczovL3N0YXRzLnN0YWNrZXhjaGFuZ2UuY29tL2EvNTU5NzMvMjAzMzg7IGFyY2hpdmVkIGF0IGh0dHBzOi8vcGVybWEuY2MvVjI1NS04NTNaOyBKYWNjYXJkICYgVHVyaXNpLCAyMDAzKToKCiQkClxiZWdpbnthbGlnbmVkfQpTRShcdGV4dHtzbG9wZX1fXHRleHR7cHJlZGljdG9yfSkgJj0gXHNxcnR7VmFyKGJfMSkgKyBWYXIoYl8zKSBcY2RvdCBaXjIgKyAyIFxjZG90IFogXGNkb3QgQ292KGIxLCBiMyl9IFxcClNFKGJfMSArIGJfMyBcY2RvdCBaKSAmPQpcZW5ke2FsaWduZWR9CiQkCgp3aGVyZToKCi0gJGJfMSQgaXMgdGhlIHNsb3BlIG9mIHRoZSBwcmVkaWN0b3Igb24gdGhlIG91dGNvbWUKLSAkYl8zJCBpcyB0aGUgc2xvcGUgb2YgdGhlIGludGVyYWN0aW9uIHRlcm0gb24gdGhlIG91dGNvbWUKLSAkWiQgaXMgdGhlIG1vZGVyYXRvcgoKVGhlIHZhcmlhbmNlIG9mIGEgd2VpZ2h0ZWQgc3VtIGlzOgoKJCQKXGJlZ2lue2FsaWduZWR9ClZhcihcdGV4dHtzbG9wZX1fXHRleHR7cHJlZGljdG9yfSkgJj0gVmFyKGJfMSkgKyBWYXIoYl8zKSBcY2RvdCBaXjIgKyAyIFxjZG90IFogXGNkb3QgQ292KGIxLCBiMykgXFwKVmFyKGJfMSArIGJfMyBcY2RvdCBaKSAmPQpcZW5ke2FsaWduZWR9CiQkCgpUaGUgc3RhbmRhcmQgZXJyb3IgaXMgdGhlIHNxdWFyZSByb290IG9mIHRoZSB2YXJpYW5jZS4KVGhlIDk1JSBjb25maWRlbmNlIGludGVydmFsIG9mIHRoZSBzbG9wZSBpcyAkXHBtJCBgciBxbm9ybSguOTc1KWAgKGkuZS4sIGBxbm9ybSguOTc1KWApIHN0YW5kYXJkIGVycm9ycyBvZiB0aGUgc2xvcGUgZXN0aW1hdGUuCgpgYGB7cn0KIyBDcmVhdGUgYSBkYXRhIGZyYW1lIGZvciBwbG90dGluZwpNdXJkZXJfbWluIDwtIG1pbihzdGF0ZXMkTXVyZGVyLCBuYS5ybSA9IFRSVUUpCk11cmRlcl9tYXggPC0gbWF4KHN0YXRlcyRNdXJkZXIsIG5hLnJtID0gVFJVRSkKCnBsb3RfZGF0YSA8LSBkYXRhLmZyYW1lKAogIE11cmRlciA9IHNlcShNdXJkZXJfbWluLCBNdXJkZXJfbWF4LCBsZW5ndGgub3V0ID0gMTAwMDApCikKCnBsb3RfZGF0YSRNdXJkZXJfY2VudGVyZWQgPC0gc2NhbGUocGxvdF9kYXRhJE11cmRlciwgc2NhbGUgPSBGQUxTRSkKCiMgQ2FsY3VsYXRlIHByZWRpY3RlZCBzbG9wZXMgYW5kIGNvbmZpZGVuY2UgaW50ZXJ2YWxzCmIxIDwtIG1vZGVyYXRpb25Nb2RlbFNpbXBsZVNsb3Blc0ZpdF9wYXJhbWV0ZXJzW3doaWNoKG1vZGVyYXRpb25Nb2RlbFNpbXBsZVNsb3Blc0ZpdF9wYXJhbWV0ZXJzJGxhYmVsID09ICJiMSIpLCAiZXN0Il0KYjMgPC0gbW9kZXJhdGlvbk1vZGVsU2ltcGxlU2xvcGVzRml0X3BhcmFtZXRlcnNbd2hpY2gobW9kZXJhdGlvbk1vZGVsU2ltcGxlU2xvcGVzRml0X3BhcmFtZXRlcnMkbGFiZWwgPT0gImIzIiksICJlc3QiXQoKYjFfc2UgPC0gbW9kZXJhdGlvbk1vZGVsU2ltcGxlU2xvcGVzRml0X3BhcmFtZXRlcnNbd2hpY2gobW9kZXJhdGlvbk1vZGVsU2ltcGxlU2xvcGVzRml0X3BhcmFtZXRlcnMkbGFiZWwgPT0gImIxIiksICJzZSJdCmIzX3NlIDwtIG1vZGVyYXRpb25Nb2RlbFNpbXBsZVNsb3Blc0ZpdF9wYXJhbWV0ZXJzW3doaWNoKG1vZGVyYXRpb25Nb2RlbFNpbXBsZVNsb3Blc0ZpdF9wYXJhbWV0ZXJzJGxhYmVsID09ICJiMyIpLCAic2UiXQoKdmFyaWFuY2VDb3ZhcmlhbmNlTWF0cml4IDwtIHZjb3YobW9kZXJhdGlvbkZpdCkKCmIxX3ZhciA8LSB2YXJpYW5jZUNvdmFyaWFuY2VNYXRyaXhbIkluY29tZV9yZXNjYWxlZH5JbGxpdGVyYWN5X2NlbnRlcmVkIiwiSW5jb21lX3Jlc2NhbGVkfklsbGl0ZXJhY3lfY2VudGVyZWQiXQpiM192YXIgPC0gdmFyaWFuY2VDb3ZhcmlhbmNlTWF0cml4WyJpbnRlcmFjdGlvbn5+aW50ZXJhY3Rpb24iLCJpbnRlcmFjdGlvbn5+aW50ZXJhY3Rpb24iXQpjb3ZfYjFiMyA8LSB2YXJpYW5jZUNvdmFyaWFuY2VNYXRyaXhbIkluY29tZV9yZXNjYWxlZH5JbGxpdGVyYWN5X2NlbnRlcmVkIiwiaW50ZXJhY3Rpb25+fmludGVyYWN0aW9uIl0KCiNzcXJ0KChiMV9zZV4yKSArICgoYjNfc2VeMikgKiBwbG90X2RhdGEkTXVyZGVyX2NlbnRlcmVkXjIpICsgKDIgKiBwbG90X2RhdGEkTXVyZGVyX2NlbnRlcmVkICogY292X2IxYjMpKQojc3FydCgoYjFfdmFyKSArICgoYjNfdmFyKSAqIHBsb3RfZGF0YSRNdXJkZXJfY2VudGVyZWReMikgKyAoMiAqIHBsb3RfZGF0YSRNdXJkZXJfY2VudGVyZWQgKiBjb3ZfYjFiMykpCgpwbG90X2RhdGEkcHJlZGljdGVkX3Nsb3BlcyA8LSBiMSArIGIzICogcGxvdF9kYXRhJE11cmRlcl9jZW50ZXJlZApwbG90X2RhdGEkc2xvcGVfc2UgPC0gc3FydCgoYjFfdmFyKSArICgoYjNfdmFyKSAqIHBsb3RfZGF0YSRNdXJkZXJfY2VudGVyZWReMikgKyAoMiAqIHBsb3RfZGF0YSRNdXJkZXJfY2VudGVyZWQgKiBjb3ZfYjFiMykpCgojIENhbGN1bGF0ZWQgdGhlIDk1JSBjb25maWRlbmNlIGludGVydmFsIGFyb3VuZCB0aGUgc2ltcGxlIHNsb3BlCnBsb3RfZGF0YSRsb3dlcl9jaSA8LSBwbG90X2RhdGEkcHJlZGljdGVkX3Nsb3BlcyAtIHFub3JtKC45NzUpICogcGxvdF9kYXRhJHNsb3BlX3NlCnBsb3RfZGF0YSR1cHBlcl9jaSA8LSBwbG90X2RhdGEkcHJlZGljdGVkX3Nsb3BlcyArIHFub3JtKC45NzUpICogcGxvdF9kYXRhJHNsb3BlX3NlCgojIFNwZWNpZnkgdGhlIHNpZ25pZmljYW50IHJhbmdlIChiYXNlZCBvbiB0aGUgcmVnaW9ucyBpZGVudGlmaWVkIGluIHRoZSBzaW1wbGUgc2xvcGVzIGFuYWx5c2lzLCBzZWUgIlNpbXBsZSBTbG9wZXMgYW5kIFJlZ2lvbnMgb2YgU2lnbmlmaWNhbmNlIiBzZWN0aW9uIGFib3ZlKQpwbG90X2RhdGEkc2lnbmlmaWNhbnRfc2xvcGUgPC0gRkFMU0UKcGxvdF9kYXRhJHNpZ25pZmljYW50X3Nsb3BlW3doaWNoKHBsb3RfZGF0YSRNdXJkZXJfY2VudGVyZWQgPCAtNC4yIHwgcGxvdF9kYXRhJE11cmRlcl9jZW50ZXJlZCA+IDMuNzUpXSA8LVRSVUUgIyBzcGVjaWZ5IHNpZ25pZmljYW50IHJhbmdlCgojIFNwZWNpZnkgdGhlIHNpZ25pZmljYW50IHJlZ2lvbiBudW1iZXIgKHRoZXJlIGFyZSBlaXRoZXIgMCwgMSwgb3IgMiBzaWduaWZpY2FudCByZWdpb25zOyBpbiBzdWNoIGNhc2VzLCB0aGVyZSB3b3VsZCBiZSAxLCAwIG9yIDEgb3IgMiwgb3IgMSBub25zaWduaWZpY2FudCByZWdpb25zLCByZXNwZWN0aXZlbHkpLS1mb3IgaW5zdGFuY2UsIHNpZyBmcm9tIDAtNCwgbnMgZnJvbSA0LTEyLCBhbmQgc2lnIGZyb20gMTItMTYgd291bGQgYmUgMiBzaWduaWZpY2FudCByZWdpb25zIGFuZCAxIG5vbnNpZ25pZmljYW50IHJlZ2lvbgpwbG90X2RhdGEkc2lnbmlmaWNhbnRSZWdpb25OdW1iZXIgPC0gTkEKcGxvdF9kYXRhJHNpZ25pZmljYW50UmVnaW9uTnVtYmVyW3doaWNoKHBsb3RfZGF0YSRNdXJkZXJfY2VudGVyZWQgPCAtNC4yKV0gPC0gMSAjIHNwZWNpZnkgc2lnbmlmaWNhbnQgcmFuZ2UgMQpwbG90X2RhdGEkc2lnbmlmaWNhbnRSZWdpb25OdW1iZXJbd2hpY2gocGxvdF9kYXRhJE11cmRlcl9jZW50ZXJlZCA+IDMuNzUpXSA8LSAyICMgc3BlY2lmeSBzaWduaWZpY2FudCByYW5nZSAyCgptaW4ocGxvdF9kYXRhJE11cmRlclt3aGljaChwbG90X2RhdGEkc2lnbmlmaWNhbnRfc2xvcGUgPT0gRkFMU0UpXSkKbWF4KHBsb3RfZGF0YSRNdXJkZXJbd2hpY2gocGxvdF9kYXRhJHNpZ25pZmljYW50X3Nsb3BlID09IEZBTFNFKV0pCgpnZ3Bsb3QocGxvdF9kYXRhLCBhZXMoeCA9IE11cmRlciwgeSA9IHByZWRpY3RlZF9zbG9wZXMpKSArCiAgZ2VvbV9yaWJib24oCiAgICBkYXRhID0gcGxvdF9kYXRhICU+JSBmaWx0ZXIoc2lnbmlmaWNhbnRfc2xvcGUgPT0gRkFMU0UpLAogICAgYWVzKHltaW4gPSBsb3dlcl9jaSwgeW1heCA9IHVwcGVyX2NpKSwKICAgIGZpbGwgPSAiI0Y4NzY2RCIsCiAgICBhbHBoYSA9IDAuMikgKyAKICBnZW9tX3JpYmJvbigKICAgIGRhdGEgPSBwbG90X2RhdGEgJT4lIGZpbHRlcihzaWduaWZpY2FudFJlZ2lvbk51bWJlciA9PSAxKSwKICAgIGFlcyh5bWluID0gbG93ZXJfY2ksIHltYXggPSB1cHBlcl9jaSksCiAgICBmaWxsID0gIiMwMEJGQzQiLAogICAgYWxwaGEgPSAwLjIpICsgCiAgZ2VvbV9yaWJib24oCiAgICBkYXRhID0gcGxvdF9kYXRhICU+JSBmaWx0ZXIoc2lnbmlmaWNhbnRSZWdpb25OdW1iZXIgPT0gMiksCiAgICBhZXMoeW1pbiA9IGxvd2VyX2NpLCB5bWF4ID0gdXBwZXJfY2kpLAogICAgZmlsbCA9ICIjMDBCRkM0IiwKICAgIGFscGhhID0gMC4yKSArCiAgZ2VvbV9saW5lKAogICAgZGF0YSA9IHBsb3RfZGF0YSAlPiUgZmlsdGVyKHNpZ25pZmljYW50X3Nsb3BlID09IEZBTFNFKSwKICAgIGFlcyh4ID0gTXVyZGVyLCB5ID0gcHJlZGljdGVkX3Nsb3BlcyksCiAgICBjb2xvciA9ICIjRjg3NjZEIiwKICAgIGxpbmV3aWR0aCA9IDIpICsKICBnZW9tX2xpbmUoCiAgICBkYXRhID0gcGxvdF9kYXRhICU+JSBmaWx0ZXIoc2lnbmlmaWNhbnRSZWdpb25OdW1iZXIgPT0gMSksCiAgICBhZXMoeCA9IE11cmRlciwgeSA9IHByZWRpY3RlZF9zbG9wZXMpLAogICAgY29sb3IgPSAiIzAwQkZDNCIsCiAgICBsaW5ld2lkdGggPSAyKSArCiAgZ2VvbV9saW5lKAogICAgZGF0YSA9IHBsb3RfZGF0YSAlPiUgZmlsdGVyKHNpZ25pZmljYW50UmVnaW9uTnVtYmVyID09IDIpLAogICAgYWVzKHggPSBNdXJkZXIsIHkgPSBwcmVkaWN0ZWRfc2xvcGVzKSwKICAgIGNvbG9yID0gIiMwMEJGQzQiLAogICAgbGluZXdpZHRoID0gMikgKwogIGdlb21faGxpbmUoeWludGVyY2VwdCA9IDAsIGxpbmV0eXBlID0gImRhc2hlZCIpICsKICBnZW9tX3ZsaW5lKHhpbnRlcmNlcHQgPSBjKDQuMDUxMjE1LCAxMS45OTkzOCksIGxpbmV0eXBlID0gMiwgY29sb3IgPSAiIzAwQkZDNCIpICsgIyB1cGRhdGUgYmFzZWQgb24gbnVtYmVycyBhYm92ZQogIGxhYnMoCiAgICB0aXRsZSA9ICJKb2huc29uLU5leW1hbiBQbG90IiwKICAgIHN1YnRpdGxlID0gIihibHVlID0gc2lnbmlmaWNhbnQgc2xvcGU7IHBpbmsgPSBub25zaWduaWZpY2FudCBzbG9wZSkiLAogICAgeCA9ICJNb2RlcmF0b3IgKE11cmRlcikiLAogICAgeSA9ICJTaW1wbGUgU2xvcGUgb2YgUHJlZGljdG9yIChJbGxpdGVyYWN5KSIpICsKICB0aGVtZV9jbGFzc2ljKCkKYGBgCgojIFBvd2VyIEFuYWx5c2lzIHsjcG93ZXJBbmFseXNpc30KCmh0dHBzOi8vaXNhYWN0cGV0ZXJzZW4uZ2l0aHViLmlvL1ByaW5jaXBsZXMtUHN5Y2hvbG9naWNhbC1Bc3Nlc3NtZW50L3NlbS5odG1sI21vbnRlQ2FybG9Qb3dlckFuYWx5c2lzCgotIGh0dHBzOi8veWlsaW5hbmRyZXdhbmcuc2hpbnlhcHBzLmlvL3B3clNFTS8KLSBodHRwczovL3NjaG9lbWFubmEuc2hpbnlhcHBzLmlvL21jX3Bvd2VyX21lZC8KLSBodHRwczovL3NqYWsuc2hpbnlhcHBzLmlvL3Bvd2VyNFNFTS8KLSBodHRwczovL3NlbXBvd2VyLnNoaW55YXBwcy5pby9zZW1wb3dlci8KLSBodHRwczovL3dlYnBvd2VyLnBzeWNoc3RhdC5vcmcvd2lraS9tb2RlbHMvaW5kZXgKCiMgUGF0aCBEaWFncmFtcyB7I3BhdGhEaWFncmFtc30KCkZvciBhIGxpc3Qgb2YgdG9vbHMgdG8gY3JlYXRlIHBhdGggZGlhZ3JhbXMsIHNlZSBbaGVyZV0oZmlndXJlcy5odG1sI3BhdGhEaWFncmFtcykuCgojIFNlc3Npb24gSW5mbwoKYGBge3IsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQpzZXNzaW9uSW5mbygpCmBgYAo=



Developmental Psychopathology Lab