Importing data takes syntax of the following form for
.csv
files:
data <- read.csv("filepath/filename.csv")
Note: it is important to use forward slashes (“/”) rather than
backslashes (“\”) when specifying filepaths in R
.
Below, I import a .csv
file and save it into an object
called mydata
(you could call this object whatever you
want):
mydata <- read.csv("https://osf.io/s6wrm/download")
Importing data takes syntax of the following form for
.RData
files:
load("filepath/filename.RData")
dataNames <- paste("data", 1:100, sep = "")
dataFilenames <- paste(dataNames, ".csv", sep = "")
dataFilepaths <- paste("C:/users/username/", dataFilenames, sep = "")
data_list <- lapply(dataFilepaths, read.csv) # lapply(dataFilepaths, data.table::fread) is even faster
names(data_list) <- basename(dataFilepaths)
Alternatively, if you want to load all .csv
files in a
directory, you can identify the filenames programmatically:
dataFilenames <- list.files(
path = "C:/users/username/",
pattern = "\\.csv$")
dataFilepaths <- list.files(
path = "C:/users/username/",
pattern = "\\.csv$",
full.names = TRUE)
data_list <- lapply(dataFilepaths, read.csv) # lapply(dataFilepaths, data.table::fread) is even faster
names(data_list) <- basename(dataFilepaths)
Saving data takes syntax of the following form for .csv
files:
write.csv(object, file = "filepath/filename.csv")
For example:
write.csv(mydata, file = "mydata.csv")
Saving data takes syntax of the following form for
.RData
files:
save(object, file = "filepath/filename.RData")
To use lab functions, first install the petersenlab
package. The petersenlab
package is here: https://devpsylab.github.io/petersenlab. You can install
it using the following commands:
install.packages("remotes")
remotes::install_github("DevPsyLab/petersenlab")
Once you have the petersenlab
package installed, load the package:
library("petersenlab")
To run scripts on the lab drive, set the path to the lab drive
(//lc-rs-store24.hpc.uiowa.edu/lss_itpetersen/Lab/
) using
the following code:
petersenLabPath <- setLabPath()
To install a single package that is on the CRAN repository, use the following syntax:
install.packages("name_of_package")
To install multiple packages that are on the CRAN repository, use the following syntax:
install.packages(c("name_of_package1","name_of_package2","name_of_package3"))
To install a package that is on a GitHub
repository, use
the following syntax:
install.packages("remotes")
remotes::install_github("username_of_GitHub_author/name_of_package")
For instance:
remotes::install_github("DevPsyLab/petersenlab")
The default way to load a package in R
is:
library("packageName1")
library("packageName2")
library("packageName3")
However, when sourcing (i.e., running) other R
scripts,
it is possible that you will run scripts that use packages that you do
not have installed, resulting in an error that prevents the script from
running. Thus, it can be safer to load packages using the lab function,
load_or_install(),
rather than using
library()
. The load_or_install()
function
checks whether a package is installed. If the package is not installed,
the function installs and loads the package. If the package is
installed, the function loads the package. To use this function, you
must have the petersenlab
package loaded.
library("petersenlab")
load_or_install(c("packageName1","packageName2","packageName3"))
For example:
library("petersenlab")
load_or_install(c("tidyverse","psych"))
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr 1.1.4 ✔ readr 2.1.5
✔ forcats 1.0.0 ✔ stringr 1.5.1
✔ ggplot2 3.5.1 ✔ tibble 3.2.1
✔ lubridate 1.9.4 ✔ tidyr 1.3.1
✔ purrr 1.0.2
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag() masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
Attaching package: 'psych'
The following objects are masked from 'package:ggplot2':
%+%, alpha
Set a seed (any number) to reproduce the results of analyses that involve random number generation.
set.seed(52242)
R
ScriptTo run an R
script, use the following syntax:
source("filepath/filename.R")
R
Markdown (.Rmd
) FileTo render a .Rmd
file, use the following syntax:
render("filepath/filename.Rmd")
To look at the names of variables in a data frame, use the following syntax:
names(mydata)
[1] "survived" "pclass" "sex" "age" "sibsp"
[6] "parch" "prediction"
Logical operators evaluate a condition for each value and yield
values of TRUE
and FALSE
, corresponding to
whether the evaluation for a given value met the condition.
==
mydata$survived == 1
[1] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
[13] TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[25] FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[37] FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[49] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
[61] TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
[73] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[85] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[97] FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
[109] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
[121] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[133] TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
[145] TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[157] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
[169] FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE
[181] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
[193] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
[205] TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
[217] FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[229] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[241] TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
[253] FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE
[265] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE
[277] FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE
[289] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
[301] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
[313] FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[325] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
[337] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
[349] FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
[361] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[373] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
[397] FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE
[409] FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[421] FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[433] TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
[445] TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[469] FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[481] FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
[493] FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
[505] FALSE TRUE TRUE TRUE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[517] FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[529] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[541] TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[553] TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[589] TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[601] FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
[613] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[625] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[649] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
[661] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[673] TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[685] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[697] TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
[709] FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
[721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
[745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[757] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[769] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE
[781] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[793] FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
[805] FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[817] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE
[829] FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[853] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[865] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE
[877] FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
[889] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[901] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[925] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE
[937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[961] FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
[973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[985] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE
[997] FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[1009] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[1033] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[1045] FALSE FALSE
!=
mydata$survived != 1
[1] FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE
[13] FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[25] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[37] TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[49] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE
[61] FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[73] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[85] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[97] TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[109] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[121] FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
[133] FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
[145] FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[157] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
[169] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE
[181] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
[193] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE FALSE
[205] FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
[217] TRUE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[229] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[241] FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
[253] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE
[265] TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
[277] TRUE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE
[289] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE
[301] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
[313] TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[325] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE
[337] FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE
[349] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[361] FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[373] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[385] FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
[397] TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE TRUE
[409] TRUE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
[421] TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[433] FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
[445] FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[457] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[469] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE TRUE
[481] TRUE FALSE FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE TRUE
[493] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE TRUE
[505] TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE
[517] TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[529] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[541] FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[553] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[565] TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[577] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[589] FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[601] TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
[613] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[625] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[637] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[649] FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE
[661] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[673] FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[685] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[697] FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE TRUE
[709] TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
[721] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[733] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE
[745] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[757] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[769] FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
[781] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[793] TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
[805] TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE TRUE TRUE
[817] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE
[829] TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[841] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[853] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[865] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE TRUE
[877] TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[889] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
[901] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[913] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[925] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE
[937] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[949] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[961] TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
[973] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[985] TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE
[997] TRUE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[1009] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1021] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[1033] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[1045] TRUE TRUE
>
mydata$parch > 1
[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[73] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[85] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[109] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[277] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[301] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[337] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
[397] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[433] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[445] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[493] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[505] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[541] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[577] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[589] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[601] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[673] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[685] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[697] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[721] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[733] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[745] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[829] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[877] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[913] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[925] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[949] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[961] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[973] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[1009] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE
<
mydata$parch < 1
[1] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE
[49] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[73] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[85] FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[97] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[109] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[121] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[133] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE
[145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[157] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[169] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE
[193] TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[205] TRUE TRUE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[217] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[229] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[241] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[253] TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[265] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[277] FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[289] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[301] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[313] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[325] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE
[337] TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE TRUE TRUE
[349] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
[361] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[373] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[385] FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[397] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE
[409] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[421] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[433] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[445] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[457] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[469] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[481] TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[493] TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[505] TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[517] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[529] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[541] FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE
[553] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[565] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[577] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[589] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[601] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE
[613] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[625] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[637] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[649] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[661] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[673] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[685] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[697] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[709] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[721] TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[733] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE
[745] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[757] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[769] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[781] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[793] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE FALSE
[805] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[817] FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[829] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[841] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[853] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[865] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
[877] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[889] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE FALSE
[901] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[925] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[937] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[949] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[961] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[973] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[985] TRUE TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[997] TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[1009] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[1021] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1033] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1045] TRUE TRUE
>=
mydata$parch >= 1
[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[49] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[73] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[85] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[97] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[109] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[121] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[169] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
[193] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[265] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[277] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[301] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[313] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[325] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[337] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[349] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
[361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[397] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
[409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[433] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[445] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[469] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[481] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[493] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[505] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[529] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[541] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[553] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[577] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[589] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[601] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[625] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[673] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[685] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[697] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[721] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[733] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
[745] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[793] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[829] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[877] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[913] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[925] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[937] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[949] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[961] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[973] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[997] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[1009] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE
<=
mydata$parch <= 1
[1] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[49] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[73] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[85] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[97] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[109] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[157] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[193] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[205] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[217] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[229] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[241] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[253] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[265] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[277] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[289] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[301] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[313] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[325] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[337] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[349] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[361] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[373] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[385] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE
[397] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[409] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[421] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[433] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[445] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[457] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[469] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[481] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[493] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[505] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[517] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[529] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[541] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[553] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[565] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[577] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[589] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[601] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[613] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[625] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[637] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[649] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[661] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[673] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[685] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[697] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[709] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[721] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[733] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[745] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[757] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[769] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[781] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[793] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[805] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[817] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[829] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[841] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[853] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[865] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[877] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[889] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[901] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[913] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[925] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[937] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[949] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[961] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[973] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[985] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[997] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[1009] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[1021] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1033] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1045] TRUE TRUE
%in%
anotherVector <- c(0,1)
mydata$parch %in% anotherVector
[1] TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[13] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[25] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[37] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[49] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[61] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[73] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[85] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[97] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[109] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[121] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[145] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[157] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[181] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[193] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[205] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[217] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[229] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[241] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[253] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[265] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[277] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[289] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[301] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[313] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[325] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[337] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[349] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[361] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[373] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[385] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE FALSE FALSE
[397] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[409] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[421] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[433] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[445] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[457] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[469] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[481] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE
[493] TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[505] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[517] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[529] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[541] FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE
[553] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[565] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[577] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[589] FALSE FALSE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[601] TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[613] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[625] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[637] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[649] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[661] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[673] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[685] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[697] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[709] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[721] TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[733] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE
[745] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[757] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[769] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[781] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[793] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[805] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[817] TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[829] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[841] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[853] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[865] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[877] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[889] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[901] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[913] TRUE FALSE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[925] TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[937] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[949] TRUE TRUE TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE TRUE
[961] TRUE TRUE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[973] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[985] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[997] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[1009] TRUE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[1021] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1033] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1045] TRUE TRUE
%ni%
Note: this function is part of the petersenlab
package and is not available in base R
.
mydata$parch %ni% anotherVector
[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[73] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[85] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[109] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[277] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[301] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[337] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
[397] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[433] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[445] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[493] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[505] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[541] TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
[553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[577] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[589] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[601] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[673] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[685] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[697] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[721] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[733] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[745] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[829] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[877] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[913] FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
[925] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[949] FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[961] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[973] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[1009] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE
is.na()
is.na(mydata$prediction)
[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1009] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE
!is.na()
!is.na(mydata$prediction)
[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[29] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[43] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[57] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[71] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[99] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[113] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[127] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[141] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[155] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[183] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[197] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[211] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[225] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[239] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[253] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[267] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[281] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[295] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[309] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[323] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[337] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[351] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[365] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[379] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[393] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[407] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[421] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[435] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[449] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[463] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[477] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[491] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[505] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[519] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[533] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[547] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[561] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[575] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[589] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[603] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[617] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[631] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[645] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[659] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[673] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[687] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[701] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[715] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[729] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[743] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[757] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[771] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[785] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[799] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[813] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[827] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[841] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[855] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[869] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[883] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[897] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[911] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[925] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[939] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[953] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[967] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[981] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[995] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1009] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1023] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1037] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
&
!is.na(mydata$prediction) & mydata$parch >= 1
[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[49] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[73] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[85] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[97] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[109] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[121] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[169] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
[193] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[265] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[277] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[301] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[313] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[325] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[337] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[349] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
[361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[397] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
[409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[433] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[445] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[469] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[481] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[493] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[505] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[529] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[541] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[553] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[577] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[589] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[601] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[625] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[673] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[685] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[697] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[721] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[733] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
[745] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[793] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[829] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[877] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[913] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[925] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[937] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[949] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[961] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[973] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[997] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[1009] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE
|
is.na(mydata$prediction) | mydata$parch >= 1
[1] FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[13] FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
[49] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[73] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[85] TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[97] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[109] TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[121] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[133] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[169] FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE
[193] FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[205] FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[217] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[241] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[253] FALSE FALSE TRUE TRUE TRUE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[265] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE TRUE
[277] TRUE TRUE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[301] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
[313] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[325] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE
[337] FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE
[349] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE TRUE FALSE
[361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[385] TRUE TRUE FALSE TRUE TRUE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[397] TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE
[409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[433] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[445] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[469] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[481] FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE
[493] FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[505] FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[529] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
[541] TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE
[553] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[565] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE
[577] FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE
[589] TRUE TRUE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[601] FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
[613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[625] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[673] TRUE TRUE TRUE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[685] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[697] FALSE FALSE FALSE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[721] FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[733] TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE
[745] FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE
[757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
[781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[793] FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE TRUE
[805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[817] TRUE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[829] TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE
[877] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
[901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[913] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE
[925] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[937] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE
[949] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
[961] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[973] TRUE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[985] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
[997] FALSE FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[1009] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE
To subset a data frame, use brackets to specify the subset of rows and columns to keep, where the value/vector before the comma specifies the rows to keep, and the value/vector after the comma specifies the columns to keep:
dataframe[rowsToKeep, columnsToKeep]
You can subset by using any of the following:
TRUE
and FALSE
corresponding to
which rows/columns to keepTo subset one variable, use the following syntax:
mydata$age
[1] 29.00 0.92 2.00 30.00 25.00 48.00 63.00 39.00 53.00 71.00 47.00 18.00
[13] 24.00 26.00 80.00 24.00 50.00 32.00 36.00 37.00 47.00 26.00 42.00 29.00
[25] 25.00 25.00 19.00 35.00 28.00 45.00 40.00 30.00 58.00 42.00 45.00 22.00
[37] 41.00 48.00 44.00 59.00 60.00 41.00 45.00 42.00 53.00 36.00 58.00 33.00
[49] 28.00 17.00 11.00 14.00 36.00 36.00 49.00 36.00 76.00 46.00 47.00 27.00
[61] 33.00 36.00 30.00 45.00 27.00 26.00 22.00 47.00 39.00 37.00 64.00 55.00
[73] 70.00 36.00 64.00 39.00 38.00 51.00 27.00 33.00 31.00 27.00 31.00 17.00
[85] 53.00 4.00 54.00 50.00 27.00 48.00 48.00 49.00 39.00 23.00 38.00 54.00
[97] 36.00 36.00 30.00 24.00 28.00 23.00 19.00 64.00 60.00 30.00 50.00 43.00
[109] 22.00 60.00 48.00 37.00 35.00 47.00 35.00 22.00 45.00 24.00 49.00 71.00
[121] 53.00 19.00 38.00 58.00 23.00 45.00 46.00 25.00 25.00 48.00 49.00 45.00
[133] 35.00 40.00 27.00 24.00 55.00 52.00 42.00 55.00 16.00 44.00 51.00 42.00
[145] 35.00 35.00 38.00 35.00 38.00 50.00 49.00 46.00 50.00 32.50 58.00 41.00
[157] 42.00 45.00 39.00 49.00 30.00 35.00 42.00 55.00 16.00 51.00 29.00 21.00
[169] 30.00 58.00 15.00 30.00 16.00 19.00 18.00 24.00 46.00 54.00 36.00 28.00
[181] 65.00 44.00 33.00 37.00 30.00 55.00 47.00 37.00 31.00 23.00 58.00 19.00
[193] 64.00 39.00 22.00 65.00 28.50 45.50 23.00 29.00 22.00 18.00 17.00 30.00
[205] 52.00 47.00 56.00 38.00 22.00 43.00 31.00 45.00 33.00 46.00 36.00 33.00
[217] 55.00 54.00 33.00 13.00 18.00 21.00 61.00 48.00 24.00 35.00 30.00 34.00
[229] 40.00 35.00 50.00 39.00 56.00 28.00 56.00 56.00 24.00 18.00 24.00 23.00
[241] 6.00 45.00 40.00 57.00 32.00 62.00 54.00 43.00 52.00 62.00 67.00 63.00
[253] 61.00 48.00 18.00 52.00 39.00 48.00 49.00 17.00 39.00 31.00 40.00 61.00
[265] 47.00 35.00 64.00 60.00 60.00 54.00 21.00 55.00 31.00 57.00 45.00 50.00
[277] 27.00 50.00 21.00 51.00 21.00 31.00 62.00 36.00 30.00 28.00 30.00 18.00
[289] 25.00 34.00 36.00 57.00 18.00 23.00 36.00 28.00 51.00 32.00 19.00 28.00
[301] 1.00 4.00 12.00 36.00 34.00 19.00 23.00 26.00 42.00 27.00 24.00 15.00
[313] 60.00 40.00 20.00 25.00 36.00 25.00 42.00 42.00 0.83 26.00 22.00 35.00
[325] 19.00 44.00 54.00 52.00 37.00 29.00 25.00 45.00 29.00 28.00 29.00 28.00
[337] 24.00 8.00 31.00 31.00 22.00 30.00 21.00 8.00 18.00 48.00 28.00 32.00
[349] 17.00 29.00 24.00 25.00 18.00 18.00 34.00 54.00 8.00 42.00 34.00 27.00
[361] 30.00 23.00 21.00 18.00 40.00 29.00 18.00 36.00 38.00 35.00 38.00 34.00
[373] 34.00 16.00 26.00 47.00 21.00 21.00 24.00 24.00 34.00 30.00 52.00 30.00
[385] 0.67 24.00 44.00 6.00 28.00 62.00 30.00 7.00 43.00 45.00 24.00 24.00
[397] 49.00 48.00 55.00 24.00 32.00 21.00 18.00 20.00 23.00 36.00 54.00 50.00
[409] 44.00 29.00 21.00 42.00 63.00 60.00 33.00 17.00 42.00 24.00 47.00 24.00
[421] 22.00 32.00 23.00 34.00 24.00 22.00 35.00 45.00 57.00 31.00 26.00 30.00
[433] 1.00 3.00 25.00 22.00 17.00 34.00 36.00 24.00 61.00 50.00 42.00 57.00
[445] 1.00 31.00 24.00 30.00 40.00 32.00 30.00 46.00 13.00 41.00 19.00 39.00
[457] 48.00 70.00 27.00 54.00 39.00 16.00 62.00 32.50 14.00 2.00 3.00 36.50
[469] 26.00 19.00 28.00 20.00 29.00 39.00 22.00 23.00 29.00 28.00 50.00 19.00
[481] 41.00 21.00 19.00 43.00 32.00 34.00 30.00 27.00 2.00 8.00 33.00 36.00
[493] 34.00 30.00 28.00 23.00 0.83 3.00 24.00 50.00 19.00 21.00 26.00 25.00
[505] 27.00 25.00 18.00 20.00 30.00 59.00 30.00 35.00 40.00 25.00 41.00 25.00
[517] 18.50 14.00 50.00 23.00 28.00 27.00 29.00 27.00 40.00 31.00 30.00 23.00
[529] 31.00 12.00 40.00 32.50 27.00 29.00 2.00 4.00 29.00 0.92 5.00 36.00
[541] 33.00 66.00 31.00 26.00 24.00 42.00 13.00 16.00 35.00 16.00 25.00 20.00
[553] 18.00 30.00 26.00 40.00 0.83 18.00 26.00 26.00 20.00 24.00 25.00 35.00
[565] 18.00 32.00 19.00 4.00 6.00 2.00 17.00 38.00 9.00 11.00 39.00 27.00
[577] 26.00 39.00 20.00 26.00 25.00 18.00 24.00 35.00 5.00 9.00 3.00 13.00
[589] 5.00 40.00 23.00 38.00 45.00 21.00 23.00 17.00 30.00 23.00 13.00 20.00
[601] 32.00 33.00 0.75 0.75 5.00 24.00 18.00 40.00 26.00 20.00 18.00 45.00
[613] 27.00 22.00 19.00 26.00 22.00 20.00 32.00 21.00 18.00 26.00 6.00 9.00
[625] 40.00 32.00 21.00 22.00 20.00 29.00 22.00 22.00 35.00 18.50 21.00 19.00
[637] 18.00 21.00 30.00 18.00 38.00 17.00 17.00 21.00 21.00 21.00 28.00 24.00
[649] 16.00 37.00 28.00 24.00 21.00 32.00 29.00 26.00 18.00 20.00 18.00 24.00
[661] 36.00 24.00 31.00 31.00 22.00 30.00 70.50 43.00 35.00 27.00 19.00 30.00
[673] 9.00 3.00 36.00 59.00 19.00 17.00 44.00 17.00 22.50 45.00 22.00 19.00
[685] 30.00 29.00 0.33 34.00 28.00 27.00 25.00 24.00 22.00 21.00 17.00 36.50
[697] 36.00 30.00 16.00 1.00 0.17 26.00 33.00 25.00 22.00 36.00 19.00 17.00
[709] 42.00 43.00 32.00 19.00 30.00 24.00 23.00 33.00 65.00 24.00 23.00 22.00
[721] 18.00 16.00 45.00 39.00 17.00 15.00 47.00 5.00 40.50 40.50 18.00 26.00
[733] 21.00 9.00 18.00 16.00 48.00 25.00 22.00 16.00 9.00 33.00 41.00 31.00
[745] 38.00 9.00 1.00 11.00 10.00 16.00 14.00 40.00 43.00 51.00 32.00 20.00
[757] 37.00 28.00 19.00 24.00 17.00 28.00 24.00 20.00 23.50 41.00 26.00 21.00
[769] 45.00 25.00 11.00 27.00 18.00 26.00 23.00 22.00 28.00 28.00 2.00 22.00
[781] 43.00 28.00 27.00 42.00 30.00 27.00 25.00 29.00 21.00 20.00 48.00 17.00
[793] 34.00 26.00 22.00 33.00 31.00 29.00 4.00 1.00 49.00 33.00 19.00 27.00
[805] 23.00 32.00 27.00 20.00 21.00 32.00 17.00 21.00 30.00 21.00 33.00 22.00
[817] 4.00 39.00 18.50 34.50 44.00 22.00 26.00 4.00 29.00 26.00 1.00 18.00
[829] 36.00 25.00 37.00 22.00 26.00 29.00 29.00 22.00 22.00 32.00 34.50 36.00
[841] 39.00 24.00 25.00 45.00 36.00 30.00 20.00 28.00 30.00 26.00 20.50 27.00
[853] 51.00 23.00 32.00 24.00 22.00 29.00 30.50 35.00 33.00 15.00 35.00 24.00
[865] 19.00 55.50 21.00 24.00 21.00 28.00 25.00 6.00 27.00 34.00 24.00 18.00
[877] 22.00 15.00 1.00 20.00 19.00 33.00 12.00 14.00 29.00 28.00 18.00 26.00
[889] 21.00 41.00 39.00 21.00 28.50 22.00 61.00 23.00 22.00 9.00 28.00 42.00
[901] 31.00 28.00 32.00 20.00 23.00 20.00 20.00 16.00 31.00 2.00 6.00 3.00
[913] 8.00 29.00 1.00 7.00 2.00 16.00 14.00 41.00 21.00 19.00 32.00 0.75
[925] 3.00 26.00 21.00 25.00 22.00 25.00 24.00 28.00 19.00 25.00 18.00 32.00
[937] 17.00 24.00 38.00 21.00 10.00 4.00 7.00 2.00 8.00 39.00 22.00 35.00
[949] 50.00 47.00 2.00 18.00 41.00 50.00 16.00 25.00 38.50 14.50 24.00 21.00
[961] 39.00 1.00 24.00 4.00 25.00 20.00 24.50 29.00 22.00 40.00 21.00 18.00
[973] 4.00 10.00 9.00 2.00 40.00 45.00 19.00 30.00 32.00 33.00 23.00 21.00
[985] 60.50 19.00 22.00 31.00 27.00 2.00 29.00 16.00 44.00 25.00 74.00 14.00
[997] 24.00 25.00 34.00 0.42 16.00 32.00 30.50 44.00 25.00 7.00 9.00 29.00
[1009] 36.00 18.00 63.00 11.50 40.50 10.00 36.00 30.00 33.00 28.00 28.00 47.00
[1021] 18.00 31.00 16.00 31.00 22.00 20.00 14.00 22.00 22.00 32.50 38.00 51.00
[1033] 18.00 21.00 47.00 28.50 21.00 27.00 36.00 27.00 15.00 45.50 14.50 26.50
[1045] 27.00 29.00
or:
mydata[,"age"]
[1] 29.00 0.92 2.00 30.00 25.00 48.00 63.00 39.00 53.00 71.00 47.00 18.00
[13] 24.00 26.00 80.00 24.00 50.00 32.00 36.00 37.00 47.00 26.00 42.00 29.00
[25] 25.00 25.00 19.00 35.00 28.00 45.00 40.00 30.00 58.00 42.00 45.00 22.00
[37] 41.00 48.00 44.00 59.00 60.00 41.00 45.00 42.00 53.00 36.00 58.00 33.00
[49] 28.00 17.00 11.00 14.00 36.00 36.00 49.00 36.00 76.00 46.00 47.00 27.00
[61] 33.00 36.00 30.00 45.00 27.00 26.00 22.00 47.00 39.00 37.00 64.00 55.00
[73] 70.00 36.00 64.00 39.00 38.00 51.00 27.00 33.00 31.00 27.00 31.00 17.00
[85] 53.00 4.00 54.00 50.00 27.00 48.00 48.00 49.00 39.00 23.00 38.00 54.00
[97] 36.00 36.00 30.00 24.00 28.00 23.00 19.00 64.00 60.00 30.00 50.00 43.00
[109] 22.00 60.00 48.00 37.00 35.00 47.00 35.00 22.00 45.00 24.00 49.00 71.00
[121] 53.00 19.00 38.00 58.00 23.00 45.00 46.00 25.00 25.00 48.00 49.00 45.00
[133] 35.00 40.00 27.00 24.00 55.00 52.00 42.00 55.00 16.00 44.00 51.00 42.00
[145] 35.00 35.00 38.00 35.00 38.00 50.00 49.00 46.00 50.00 32.50 58.00 41.00
[157] 42.00 45.00 39.00 49.00 30.00 35.00 42.00 55.00 16.00 51.00 29.00 21.00
[169] 30.00 58.00 15.00 30.00 16.00 19.00 18.00 24.00 46.00 54.00 36.00 28.00
[181] 65.00 44.00 33.00 37.00 30.00 55.00 47.00 37.00 31.00 23.00 58.00 19.00
[193] 64.00 39.00 22.00 65.00 28.50 45.50 23.00 29.00 22.00 18.00 17.00 30.00
[205] 52.00 47.00 56.00 38.00 22.00 43.00 31.00 45.00 33.00 46.00 36.00 33.00
[217] 55.00 54.00 33.00 13.00 18.00 21.00 61.00 48.00 24.00 35.00 30.00 34.00
[229] 40.00 35.00 50.00 39.00 56.00 28.00 56.00 56.00 24.00 18.00 24.00 23.00
[241] 6.00 45.00 40.00 57.00 32.00 62.00 54.00 43.00 52.00 62.00 67.00 63.00
[253] 61.00 48.00 18.00 52.00 39.00 48.00 49.00 17.00 39.00 31.00 40.00 61.00
[265] 47.00 35.00 64.00 60.00 60.00 54.00 21.00 55.00 31.00 57.00 45.00 50.00
[277] 27.00 50.00 21.00 51.00 21.00 31.00 62.00 36.00 30.00 28.00 30.00 18.00
[289] 25.00 34.00 36.00 57.00 18.00 23.00 36.00 28.00 51.00 32.00 19.00 28.00
[301] 1.00 4.00 12.00 36.00 34.00 19.00 23.00 26.00 42.00 27.00 24.00 15.00
[313] 60.00 40.00 20.00 25.00 36.00 25.00 42.00 42.00 0.83 26.00 22.00 35.00
[325] 19.00 44.00 54.00 52.00 37.00 29.00 25.00 45.00 29.00 28.00 29.00 28.00
[337] 24.00 8.00 31.00 31.00 22.00 30.00 21.00 8.00 18.00 48.00 28.00 32.00
[349] 17.00 29.00 24.00 25.00 18.00 18.00 34.00 54.00 8.00 42.00 34.00 27.00
[361] 30.00 23.00 21.00 18.00 40.00 29.00 18.00 36.00 38.00 35.00 38.00 34.00
[373] 34.00 16.00 26.00 47.00 21.00 21.00 24.00 24.00 34.00 30.00 52.00 30.00
[385] 0.67 24.00 44.00 6.00 28.00 62.00 30.00 7.00 43.00 45.00 24.00 24.00
[397] 49.00 48.00 55.00 24.00 32.00 21.00 18.00 20.00 23.00 36.00 54.00 50.00
[409] 44.00 29.00 21.00 42.00 63.00 60.00 33.00 17.00 42.00 24.00 47.00 24.00
[421] 22.00 32.00 23.00 34.00 24.00 22.00 35.00 45.00 57.00 31.00 26.00 30.00
[433] 1.00 3.00 25.00 22.00 17.00 34.00 36.00 24.00 61.00 50.00 42.00 57.00
[445] 1.00 31.00 24.00 30.00 40.00 32.00 30.00 46.00 13.00 41.00 19.00 39.00
[457] 48.00 70.00 27.00 54.00 39.00 16.00 62.00 32.50 14.00 2.00 3.00 36.50
[469] 26.00 19.00 28.00 20.00 29.00 39.00 22.00 23.00 29.00 28.00 50.00 19.00
[481] 41.00 21.00 19.00 43.00 32.00 34.00 30.00 27.00 2.00 8.00 33.00 36.00
[493] 34.00 30.00 28.00 23.00 0.83 3.00 24.00 50.00 19.00 21.00 26.00 25.00
[505] 27.00 25.00 18.00 20.00 30.00 59.00 30.00 35.00 40.00 25.00 41.00 25.00
[517] 18.50 14.00 50.00 23.00 28.00 27.00 29.00 27.00 40.00 31.00 30.00 23.00
[529] 31.00 12.00 40.00 32.50 27.00 29.00 2.00 4.00 29.00 0.92 5.00 36.00
[541] 33.00 66.00 31.00 26.00 24.00 42.00 13.00 16.00 35.00 16.00 25.00 20.00
[553] 18.00 30.00 26.00 40.00 0.83 18.00 26.00 26.00 20.00 24.00 25.00 35.00
[565] 18.00 32.00 19.00 4.00 6.00 2.00 17.00 38.00 9.00 11.00 39.00 27.00
[577] 26.00 39.00 20.00 26.00 25.00 18.00 24.00 35.00 5.00 9.00 3.00 13.00
[589] 5.00 40.00 23.00 38.00 45.00 21.00 23.00 17.00 30.00 23.00 13.00 20.00
[601] 32.00 33.00 0.75 0.75 5.00 24.00 18.00 40.00 26.00 20.00 18.00 45.00
[613] 27.00 22.00 19.00 26.00 22.00 20.00 32.00 21.00 18.00 26.00 6.00 9.00
[625] 40.00 32.00 21.00 22.00 20.00 29.00 22.00 22.00 35.00 18.50 21.00 19.00
[637] 18.00 21.00 30.00 18.00 38.00 17.00 17.00 21.00 21.00 21.00 28.00 24.00
[649] 16.00 37.00 28.00 24.00 21.00 32.00 29.00 26.00 18.00 20.00 18.00 24.00
[661] 36.00 24.00 31.00 31.00 22.00 30.00 70.50 43.00 35.00 27.00 19.00 30.00
[673] 9.00 3.00 36.00 59.00 19.00 17.00 44.00 17.00 22.50 45.00 22.00 19.00
[685] 30.00 29.00 0.33 34.00 28.00 27.00 25.00 24.00 22.00 21.00 17.00 36.50
[697] 36.00 30.00 16.00 1.00 0.17 26.00 33.00 25.00 22.00 36.00 19.00 17.00
[709] 42.00 43.00 32.00 19.00 30.00 24.00 23.00 33.00 65.00 24.00 23.00 22.00
[721] 18.00 16.00 45.00 39.00 17.00 15.00 47.00 5.00 40.50 40.50 18.00 26.00
[733] 21.00 9.00 18.00 16.00 48.00 25.00 22.00 16.00 9.00 33.00 41.00 31.00
[745] 38.00 9.00 1.00 11.00 10.00 16.00 14.00 40.00 43.00 51.00 32.00 20.00
[757] 37.00 28.00 19.00 24.00 17.00 28.00 24.00 20.00 23.50 41.00 26.00 21.00
[769] 45.00 25.00 11.00 27.00 18.00 26.00 23.00 22.00 28.00 28.00 2.00 22.00
[781] 43.00 28.00 27.00 42.00 30.00 27.00 25.00 29.00 21.00 20.00 48.00 17.00
[793] 34.00 26.00 22.00 33.00 31.00 29.00 4.00 1.00 49.00 33.00 19.00 27.00
[805] 23.00 32.00 27.00 20.00 21.00 32.00 17.00 21.00 30.00 21.00 33.00 22.00
[817] 4.00 39.00 18.50 34.50 44.00 22.00 26.00 4.00 29.00 26.00 1.00 18.00
[829] 36.00 25.00 37.00 22.00 26.00 29.00 29.00 22.00 22.00 32.00 34.50 36.00
[841] 39.00 24.00 25.00 45.00 36.00 30.00 20.00 28.00 30.00 26.00 20.50 27.00
[853] 51.00 23.00 32.00 24.00 22.00 29.00 30.50 35.00 33.00 15.00 35.00 24.00
[865] 19.00 55.50 21.00 24.00 21.00 28.00 25.00 6.00 27.00 34.00 24.00 18.00
[877] 22.00 15.00 1.00 20.00 19.00 33.00 12.00 14.00 29.00 28.00 18.00 26.00
[889] 21.00 41.00 39.00 21.00 28.50 22.00 61.00 23.00 22.00 9.00 28.00 42.00
[901] 31.00 28.00 32.00 20.00 23.00 20.00 20.00 16.00 31.00 2.00 6.00 3.00
[913] 8.00 29.00 1.00 7.00 2.00 16.00 14.00 41.00 21.00 19.00 32.00 0.75
[925] 3.00 26.00 21.00 25.00 22.00 25.00 24.00 28.00 19.00 25.00 18.00 32.00
[937] 17.00 24.00 38.00 21.00 10.00 4.00 7.00 2.00 8.00 39.00 22.00 35.00
[949] 50.00 47.00 2.00 18.00 41.00 50.00 16.00 25.00 38.50 14.50 24.00 21.00
[961] 39.00 1.00 24.00 4.00 25.00 20.00 24.50 29.00 22.00 40.00 21.00 18.00
[973] 4.00 10.00 9.00 2.00 40.00 45.00 19.00 30.00 32.00 33.00 23.00 21.00
[985] 60.50 19.00 22.00 31.00 27.00 2.00 29.00 16.00 44.00 25.00 74.00 14.00
[997] 24.00 25.00 34.00 0.42 16.00 32.00 30.50 44.00 25.00 7.00 9.00 29.00
[1009] 36.00 18.00 63.00 11.50 40.50 10.00 36.00 30.00 33.00 28.00 28.00 47.00
[1021] 18.00 31.00 16.00 31.00 22.00 20.00 14.00 22.00 22.00 32.50 38.00 51.00
[1033] 18.00 21.00 47.00 28.50 21.00 27.00 36.00 27.00 15.00 45.50 14.50 26.50
[1045] 27.00 29.00
To subset one variable, use the following syntax:
mydata$age[which(mydata$survived == 1)]
[1] 29.00 0.92 48.00 63.00 53.00 18.00 24.00 26.00 80.00 50.00 32.00 37.00
[13] 47.00 26.00 42.00 29.00 25.00 19.00 35.00 28.00 40.00 30.00 58.00 45.00
[25] 22.00 44.00 59.00 60.00 41.00 42.00 53.00 36.00 58.00 11.00 14.00 36.00
[37] 36.00 76.00 47.00 27.00 33.00 36.00 30.00 45.00 26.00 22.00 39.00 64.00
[49] 55.00 36.00 64.00 38.00 51.00 27.00 33.00 27.00 31.00 17.00 53.00 4.00
[61] 54.00 27.00 48.00 48.00 49.00 23.00 38.00 54.00 36.00 24.00 28.00 23.00
[73] 60.00 30.00 50.00 43.00 22.00 60.00 48.00 35.00 35.00 22.00 45.00 49.00
[85] 53.00 19.00 58.00 23.00 45.00 25.00 25.00 48.00 49.00 35.00 27.00 24.00
[97] 52.00 16.00 44.00 51.00 35.00 35.00 38.00 35.00 38.00 49.00 42.00 45.00
[109] 39.00 49.00 30.00 35.00 55.00 16.00 51.00 21.00 58.00 15.00 16.00 18.00
[121] 24.00 36.00 33.00 37.00 30.00 31.00 23.00 19.00 39.00 22.00 22.00 17.00
[133] 30.00 52.00 56.00 43.00 45.00 33.00 33.00 54.00 13.00 18.00 21.00 48.00
[145] 24.00 35.00 30.00 34.00 40.00 35.00 39.00 56.00 28.00 18.00 24.00 23.00
[157] 6.00 45.00 40.00 32.00 54.00 43.00 52.00 62.00 48.00 18.00 39.00 48.00
[169] 17.00 39.00 31.00 35.00 60.00 55.00 31.00 45.00 50.00 21.00 21.00 31.00
[181] 36.00 28.00 36.00 36.00 32.00 19.00 1.00 4.00 12.00 36.00 34.00 19.00
[193] 24.00 15.00 40.00 20.00 36.00 42.00 0.83 26.00 22.00 35.00 25.00 45.00
[205] 28.00 24.00 8.00 31.00 22.00 8.00 48.00 28.00 24.00 18.00 34.00 8.00
[217] 34.00 27.00 30.00 29.00 34.00 0.67 24.00 6.00 62.00 7.00 45.00 24.00
[229] 24.00 48.00 55.00 20.00 54.00 29.00 42.00 17.00 24.00 23.00 24.00 45.00
[241] 1.00 3.00 22.00 17.00 34.00 42.00 1.00 24.00 13.00 41.00 19.00 14.00
[253] 2.00 3.00 20.00 29.00 22.00 29.00 50.00 21.00 19.00 32.00 30.00 2.00
[265] 8.00 33.00 30.00 28.00 0.83 3.00 24.00 50.00 21.00 25.00 18.00 20.00
[277] 30.00 30.00 40.00 50.00 28.00 27.00 31.00 31.00 12.00 40.00 32.50 29.00
[289] 2.00 4.00 29.00 0.92 5.00 33.00 31.00 26.00 35.00 16.00 25.00 20.00
[301] 18.00 0.83 18.00 26.00 19.00 17.00 27.00 3.00 5.00 23.00 38.00 45.00
[313] 13.00 33.00 0.75 0.75 5.00 24.00 18.00 20.00 32.00 22.00 21.00 16.00
[325] 32.00 18.00 22.00 9.00 3.00 36.00 17.00 45.00 30.00 29.00 36.50 36.00
[337] 30.00 1.00 0.17 33.00 19.00 19.00 30.00 23.00 24.00 22.00 5.00 16.00
[349] 9.00 31.00 24.00 45.00 27.00 26.00 22.00 2.00 22.00 27.00 29.00 21.00
[361] 26.00 4.00 1.00 27.00 32.00 32.00 21.00 4.00 39.00 4.00 29.00 26.00
[373] 25.00 22.00 26.00 22.00 20.00 27.00 23.00 32.00 24.00 15.00 21.00 6.00
[385] 27.00 24.00 15.00 1.00 20.00 19.00 12.00 14.00 18.00 26.00 39.00 22.00
[397] 22.00 9.00 32.00 31.00 25.00 32.00 21.00 1.00 24.00 4.00 25.00 29.00
[409] 18.00 23.00 31.00 16.00 44.00 14.00 25.00 0.42 16.00 25.00 7.00 9.00
[421] 29.00 18.00 63.00 22.00 38.00 47.00 15.00
or:
mydata[which(mydata$survived == 1), "age"]
[1] 29.00 0.92 48.00 63.00 53.00 18.00 24.00 26.00 80.00 50.00 32.00 37.00
[13] 47.00 26.00 42.00 29.00 25.00 19.00 35.00 28.00 40.00 30.00 58.00 45.00
[25] 22.00 44.00 59.00 60.00 41.00 42.00 53.00 36.00 58.00 11.00 14.00 36.00
[37] 36.00 76.00 47.00 27.00 33.00 36.00 30.00 45.00 26.00 22.00 39.00 64.00
[49] 55.00 36.00 64.00 38.00 51.00 27.00 33.00 27.00 31.00 17.00 53.00 4.00
[61] 54.00 27.00 48.00 48.00 49.00 23.00 38.00 54.00 36.00 24.00 28.00 23.00
[73] 60.00 30.00 50.00 43.00 22.00 60.00 48.00 35.00 35.00 22.00 45.00 49.00
[85] 53.00 19.00 58.00 23.00 45.00 25.00 25.00 48.00 49.00 35.00 27.00 24.00
[97] 52.00 16.00 44.00 51.00 35.00 35.00 38.00 35.00 38.00 49.00 42.00 45.00
[109] 39.00 49.00 30.00 35.00 55.00 16.00 51.00 21.00 58.00 15.00 16.00 18.00
[121] 24.00 36.00 33.00 37.00 30.00 31.00 23.00 19.00 39.00 22.00 22.00 17.00
[133] 30.00 52.00 56.00 43.00 45.00 33.00 33.00 54.00 13.00 18.00 21.00 48.00
[145] 24.00 35.00 30.00 34.00 40.00 35.00 39.00 56.00 28.00 18.00 24.00 23.00
[157] 6.00 45.00 40.00 32.00 54.00 43.00 52.00 62.00 48.00 18.00 39.00 48.00
[169] 17.00 39.00 31.00 35.00 60.00 55.00 31.00 45.00 50.00 21.00 21.00 31.00
[181] 36.00 28.00 36.00 36.00 32.00 19.00 1.00 4.00 12.00 36.00 34.00 19.00
[193] 24.00 15.00 40.00 20.00 36.00 42.00 0.83 26.00 22.00 35.00 25.00 45.00
[205] 28.00 24.00 8.00 31.00 22.00 8.00 48.00 28.00 24.00 18.00 34.00 8.00
[217] 34.00 27.00 30.00 29.00 34.00 0.67 24.00 6.00 62.00 7.00 45.00 24.00
[229] 24.00 48.00 55.00 20.00 54.00 29.00 42.00 17.00 24.00 23.00 24.00 45.00
[241] 1.00 3.00 22.00 17.00 34.00 42.00 1.00 24.00 13.00 41.00 19.00 14.00
[253] 2.00 3.00 20.00 29.00 22.00 29.00 50.00 21.00 19.00 32.00 30.00 2.00
[265] 8.00 33.00 30.00 28.00 0.83 3.00 24.00 50.00 21.00 25.00 18.00 20.00
[277] 30.00 30.00 40.00 50.00 28.00 27.00 31.00 31.00 12.00 40.00 32.50 29.00
[289] 2.00 4.00 29.00 0.92 5.00 33.00 31.00 26.00 35.00 16.00 25.00 20.00
[301] 18.00 0.83 18.00 26.00 19.00 17.00 27.00 3.00 5.00 23.00 38.00 45.00
[313] 13.00 33.00 0.75 0.75 5.00 24.00 18.00 20.00 32.00 22.00 21.00 16.00
[325] 32.00 18.00 22.00 9.00 3.00 36.00 17.00 45.00 30.00 29.00 36.50 36.00
[337] 30.00 1.00 0.17 33.00 19.00 19.00 30.00 23.00 24.00 22.00 5.00 16.00
[349] 9.00 31.00 24.00 45.00 27.00 26.00 22.00 2.00 22.00 27.00 29.00 21.00
[361] 26.00 4.00 1.00 27.00 32.00 32.00 21.00 4.00 39.00 4.00 29.00 26.00
[373] 25.00 22.00 26.00 22.00 20.00 27.00 23.00 32.00 24.00 15.00 21.00 6.00
[385] 27.00 24.00 15.00 1.00 20.00 19.00 12.00 14.00 18.00 26.00 39.00 22.00
[397] 22.00 9.00 32.00 31.00 25.00 32.00 21.00 1.00 24.00 4.00 25.00 29.00
[409] 18.00 23.00 31.00 16.00 44.00 14.00 25.00 0.42 16.00 25.00 7.00 9.00
[421] 29.00 18.00 63.00 22.00 38.00 47.00 15.00
To subset particular columns/variables, use the following syntax:
R
subsetVars <- c("survived","age","prediction")
mydata[,c(1,2,3)]
mydata[,c("survived","age","prediction")]
mydata[,subsetVars]
Or, to drop columns:
dropVars <- c("sibsp","parch")
mydata[,-c(5,6)]
mydata[,names(mydata) %ni% c("sibsp","parch")]
mydata[,names(mydata) %ni% dropVars]
mydata %>%
select(survived, age, prediction)
mydata %>%
select(survived:prediction)
mydata %>%
select(all_of(subsetVars))
Or, to drop columns:
mydata %>%
select(-sibsp, -parch)
mydata %>%
select(-c(sibsp:parch))
mydata %>%
select(-all_of(dropVars))
To subset particular rows, use the following syntax:
R
subsetRows <- c(1,3,5)
mydata[c(1,3,5),]
mydata[subsetRows,]
mydata[which(mydata$survived == 1),]
mydata %>%
filter(survived == 1)
mydata %>%
filter(survived == 1, parch <= 1)
mydata %>%
filter(survived == 1 | parch <= 1)
To subset particular rows and columns, use the following syntax:
R
mydata[c(1,3,5), c(1,2,3)]
mydata[subsetRows, subsetVars]
mydata[which(mydata$survived == 1), subsetVars]
mydata %>%
filter(survived == 1) %>%
select(all_of(subsetVars))
To view data, use the following syntax:
View(mydata)
To view only the first six rows (if a data frame) or elements (if a vector), use the following syntax:
head(mydata)
head(mydata$age)
[1] 29.00 0.92 2.00 30.00 25.00 48.00
str(mydata)
'data.frame': 1046 obs. of 7 variables:
$ survived : int 1 1 0 0 0 1 1 0 1 0 ...
$ pclass : int 1 1 1 1 1 1 1 1 1 1 ...
$ sex : chr "female" "male" "female" "male" ...
$ age : num 29 0.92 2 30 25 48 63 39 53 71 ...
$ sibsp : int 0 1 1 1 1 0 1 0 2 0 ...
$ parch : int 0 2 2 2 2 0 0 0 0 0 ...
$ prediction: num 0.945 0.784 0.979 0.516 0.946 ...
Number of rows and columns:
dim(mydata)
[1] 1046 7
length(mydata$age)
[1] 1046
length(mydata$age[which(is.na(mydata$age))])
[1] 0
length(mydata$age[which(!is.na(mydata$age))])
[1] 1046
length(na.omit(mydata$age))
[1] 1046
To create a new variable, use the following syntax:
mydata$newVar <- NA
Here is an example of creating a new variable:
mydata$ID <- 1:nrow(mydata)
Here is an example of creating a data frame:
mydata2 <- data.frame(
ID = c(1:5, 1047:1051),
cat = sample(0:1, 10, replace = TRUE)
)
mydata2
Here is an example of recoding a variable:
mydata$oldVar1[which(mydata$sex == "male")] <- 0
mydata$oldVar1[which(mydata$sex == "female")] <- 1
mydata$oldVar2[which(mydata$sex == "male")] <- 1
mydata$oldVar2[which(mydata$sex == "female")] <- 0
Recode multiple variables:
mydata %>%
mutate(across(c(
survived:pclass),
~ case_match(
.,
0 ~ "No",
1 ~ "Yes")))
mydata %>%
mutate(across(c(
survived:pclass),
~ case_match(
.,
c(0,1) ~ 1,
c(2,3) ~ 2)))
mydata <- mydata %>%
rename(
newVar1 = oldVar1,
newVar2 = oldVar2)
Using a vector of variable names:
varNamesFrom <- c("oldVar1","oldVar2")
varNamesTo <- c("newVar1","newVar2")
mydata <- mydata %>%
rename_with(~ varNamesTo, all_of(varNamesFrom))
One variable:
mydata$factorVar <- factor(mydata$sex)
mydata$numericVar <- as.numeric(mydata$prediction)
mydata$integerVar <- as.integer(mydata$parch)
mydata$characterVar <- as.character(mydata$sex)
Multiple variables:
mydata %>%
mutate(across(c(
age,
parch,
prediction),
as.numeric))
mydata %>%
mutate(across(
age:parch,
as.numeric))
mydata %>%
mutate(across(where(is.factor), as.character))
Merging (also called joining) merges two data objects using a shared
set of variables called “keys.” The keys are the variable(s) that
uniquely identify each row (i.e., they account for the levels of
nesting). In some data objects, the key might be the participant’s ID
(e.g., participantID
). However, some data objects have
multiple keys. For instance, in long form data objects, each participant
may have multiple rows corresponding to multiple timepoints. In this
case, the keys are participantID
and
timepoint
. If a participant has multiple rows corresponding
to timepoints and measures, the keys are participantID
,
timepoint
, and measure
. In general, each row
should have a value on each of the keys; there should be no missingness
in the keys.
To merge two objects, the keys must be present in both objects. The
keys are used to merge the variables in object 1 (x
) with
the variables in object 2 (y
). Different merge types select
different rows to merge.
Note: if the two objects include variables with the same name (apart
from the keys), R
will not know how you want each to appear
in the merged object. So, it will add a suffix (e.g., .x
,
.y
) to each common variable to indicate which object (i.e.,
object x
or object y
) the variable came from,
where object x
is the first object—i.e., the object to
which object y
(the second object) is merged. In general,
apart from the keys, you should not include variables with the same name
in two objects to be merged. To prevent this, either remove or rename
the shared variable in one of the objects, or include the shared
variable as a key. However, as described above, you should include it as
a key only if it uniquely identifies each row
in terms of levels of nesting.
Here are the data in the mydata
object:
mydata
dim(mydata)
[1] 1046 14
Here are the data in the mydata2
object:
mydata2
dim(mydata2)
[1] 10 2
Below is a visual that depicts various types of merges/joins. Object
x
is the circle labeled as A
. Object
y
is the circle labeled as B
. The area of
overlap in the Venn diagram indicates the rows on the keys that are
shared between the two objects (e.g., participantID
values
1, 2, and 3). The non-overlapping area indicates the rows on the keys
that are unique to each object (e.g., participantID
values
4, 5, and 6 in Object x
and values 7, 8, and 9 in Object
y
). The shaded yellow area indicates which rows (on the
keys) are kept in the merged object from each of the two objects, when
using each of the merge types. For instance, a left outer join keeps the
shared rows and the rows that are unique to object x
, but
it drops the rows that are unique to object y
.
Image source: Predictive Hacks (archived at: https://perma.cc/WV7U-BS68)
A full outer join includes all rows in \(x\) or \(y\). It returns columns from \(x\) and \(y\). Here is how to merge two data frames using a full outer join (i.e., “full join”):
fullJoinData <- merge(mydata, mydata2, by = "ID", all = TRUE)
fullJoinData
dim(fullJoinData)
[1] 1051 15
Or, alternatively, using tidyverse
:
full_join(mydata, mydata2, by = "ID")
A left outer join includes all rows in \(x\). It returns columns from \(x\) and \(y\). Here is how to merge two data frames using a left outer join (“left join”):
leftJoinData <- merge(mydata, mydata2, by = "ID", all.x = TRUE)
leftJoinData
dim(leftJoinData)
[1] 1046 15
Or, alternatively, using tidyverse
:
left_join(mydata, mydata2, by = "ID")
A right outer join includes all rows in \(y\). It returns columns from \(x\) and \(y\). Here is how to merge two data frames using a right outer join (“right join”):
rightJoinData <- merge(mydata, mydata2, by = "ID", all.y = TRUE)
rightJoinData
dim(rightJoinData)
[1] 10 15
Or, alternatively, using tidyverse
:
right_join(mydata, mydata2, by = "ID")
An inner join includes all rows that are in both \(x\) and \(y\). An inner join will return one row of \(x\) for each matching row of \(y\), and can duplicate values of records on either side (left or right) if \(x\) and \(y\) have more than one matching record. It returns columns from \(x\) and \(y\). Here is how to merge two data frames using an inner join:
innerJoinData <- merge(mydata, mydata2, by = "ID", all.x = FALSE, all.y = FALSE)
innerJoinData
dim(innerJoinData)
[1] 5 15
Or, alternatively, using tidyverse
:
inner_join(mydata, mydata2, by = "ID")
A semi join is a filter. A left semi join returns all rows from \(x\) with a match in \(y\). That is, it filters out records from \(x\) that are not in \(y\). Unlike an inner join, a left semi join will never duplicate rows of \(x\), and it includes columns from only \(x\) (not from \(y\)). Here is how to merge two data frames using a left semi join:
semiJoinData <- semi_join(mydata, mydata2, by = "ID")
semiJoinData
dim(semiJoinData)
[1] 5 14
An anti join is a filter. A left anti join returns all rows from \(x\) without a match in \(y\). That is, it filters out records from \(x\) that are in \(y\). It returns columns from only \(x\) (not from \(y\)). Here is how to merge two data frames using a left anti join:
antiJoinData <- anti_join(mydata, mydata2, by = "ID")
antiJoinData
dim(antiJoinData)
[1] 1041 14
A cross join combines each row in \(x\) with each row in \(y\).
crossJoinData <- cross_join(
data.frame(rater = c("Mother","Father","Teacher")),
data.frame(timepoint = 1:3))
crossJoinData
dim(crossJoinData)
[1] 9 2
Original data:
fish_encounters
Data widened by a variable (station
), using
tidyverse
:
fish_encounters %>%
pivot_wider(
names_from = station,
values_from = seen)
Original data:
mtcars
Data in long form, transformed from wide form using
tidyverse
:
mtcars %>%
pivot_longer(
cols = everything(),
names_to = "variable",
values_to = "value")
Create data with multiple coders:
idWaveCoder <-
expand.grid(
id = 1:100,
wave = 1:3,
coder = 1:3,
positiveAffect = NA,
negativeAffect = NA
)
idWaveCoder$positiveAffect <- rnorm(nrow(idWaveCoder))
idWaveCoder$negativeAffect <- rnorm(nrow(idWaveCoder))
idWaveCoder %>%
arrange(id, wave, coder)
Average data across coders:
idWave <- idWaveCoder %>%
group_by(id, wave) %>%
summarise(
across(everything(),
~ mean(.x, na.rm = TRUE)),
.groups = "drop") %>%
select(-coder)
idWave
If you want to perform the same computation multiple times, it can be
faster to do it in a loop compared to writing out the same computation
many times. For instance, here is a loop that prints each element of a
vector and the loop index (i
) that indicates where the loop
is in terms of its iterations:
fruits <- c("apple", "banana", "cherry")
for(i in 1:length(fruits)){
print(paste("The loop is at index:", i, sep = " "))
print(fruits[i])
}
[1] "The loop is at index: 1"
[1] "apple"
[1] "The loop is at index: 2"
[1] "banana"
[1] "The loop is at index: 3"
[1] "cherry"
sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 24.04.1 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.26.so; LAPACK version 3.12.0
locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
time zone: UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] psych_2.4.12 lubridate_1.9.4 forcats_1.0.0 stringr_1.5.1
[5] dplyr_1.1.4 purrr_1.0.2 readr_2.1.5 tidyr_1.3.1
[9] tibble_3.2.1 ggplot2_3.5.1 tidyverse_2.0.0 petersenlab_1.1.0
loaded via a namespace (and not attached):
[1] gtable_0.3.6 xfun_0.50 bslib_0.8.0 htmlwidgets_1.6.4
[5] lattice_0.22-6 tzdb_0.4.0 quadprog_1.5-8 vctrs_0.6.5
[9] tools_4.4.2 generics_0.1.3 stats4_4.4.2 parallel_4.4.2
[13] cluster_2.1.6 pkgconfig_2.0.3 data.table_1.16.4 checkmate_2.3.2
[17] RColorBrewer_1.1-3 lifecycle_1.0.4 compiler_4.4.2 munsell_0.5.1
[21] mnormt_2.1.1 mitools_2.4 htmltools_0.5.8.1 sass_0.4.9
[25] yaml_2.3.10 htmlTable_2.4.3 Formula_1.2-5 pillar_1.10.1
[29] jquerylib_0.1.4 cachem_1.1.0 Hmisc_5.2-2 rpart_4.1.23
[33] nlme_3.1-166 lavaan_0.6-19 tidyselect_1.2.1 digest_0.6.37
[37] mvtnorm_1.3-3 stringi_1.8.4 reshape2_1.4.4 fastmap_1.2.0
[41] grid_4.4.2 colorspace_2.1-1 cli_3.6.3 magrittr_2.0.3
[45] base64enc_0.1-3 pbivnorm_0.6.0 withr_3.0.2 foreign_0.8-87
[49] scales_1.3.0 backports_1.5.0 timechange_0.3.0 rmarkdown_2.29
[53] nnet_7.3-19 gridExtra_2.3 hms_1.1.3 evaluate_1.0.3
[57] knitr_1.49 mix_1.0-13 viridisLite_0.4.2 rlang_1.1.4
[61] Rcpp_1.0.13-1 xtable_1.8-4 glue_1.8.0 DBI_1.2.3
[65] rstudioapi_0.17.1 jsonlite_1.8.9 R6_2.5.1 plyr_1.8.9