1 Import Data

Importing data takes syntax of the following form for .csv files:

data <- read.csv("filepath/filename.csv")

Note: it is important to use forward slashes (“/”) rather than backslashes (“\”) when specifying filepaths in R.

Below, I import a .csv file and save it into an object called mydata (you could call this object whatever you want):

mydata <- read.csv("https://osf.io/s6wrm/download")

Importing data takes syntax of the following form for .RData files:

load("filepath/filename.RData")

1.1 Import Multiple Data Files

dataNames <- paste("data", 1:100, sep = "")
dataFilenames <- paste(dataNames, ".csv", sep = "")
dataFilepaths <- paste("C:/users/username/", dataFilenames, sep = "")

data_list <- lapply(dataFilepaths, read.csv) # lapply(dataFilepaths, data.table::fread) is even faster
names(data_list) <- basename(dataFilepaths)

Alternatively, if you want to load all .csv files in a directory, you can identify the filenames programmatically:

dataFilenames <- list.files(
  path = "C:/users/username/",
  pattern = "\\.csv$")

dataFilepaths <- list.files(
  path = "C:/users/username/",
  pattern = "\\.csv$",
  full.names = TRUE)

data_list <- lapply(dataFilepaths, read.csv) # lapply(dataFilepaths, data.table::fread) is even faster
names(data_list) <- basename(dataFilepaths)

2 Save Data

Saving data takes syntax of the following form for .csv files:

write.csv(object, file = "filepath/filename.csv")

For example:

write.csv(mydata, file = "mydata.csv")

Saving data takes syntax of the following form for .RData files:

save(object, file = "filepath/filename.RData")

3 Use Lab Functions

To use lab functions, first install the petersenlab package. The petersenlab package is here: https://devpsylab.github.io/petersenlab. You can install it using the following commands:

install.packages("remotes")
remotes::install_github("DevPsyLab/petersenlab")

Once you have the petersenlab package installed, load the package:

library("petersenlab")

To run scripts on the lab drive, set the path to the lab drive (//lc-rs-store24.hpc.uiowa.edu/lss_itpetersen/Lab/) using the following code:

petersenLabPath <- setLabPath()

4 Load/Install Packages

To install a single package that is on the CRAN repository, use the following syntax:

install.packages("name_of_package")

To install multiple packages that are on the CRAN repository, use the following syntax:

install.packages(c("name_of_package1","name_of_package2","name_of_package3"))

To install a package that is on a GitHub repository, use the following syntax:

install.packages("remotes")
remotes::install_github("username_of_GitHub_author/name_of_package")

For instance:

remotes::install_github("DevPsyLab/petersenlab")

The default way to load a package in R is:

library("packageName1")
library("packageName2")
library("packageName3")

However, when sourcing (i.e., running) other R scripts, it is possible that you will run scripts that use packages that you do not have installed, resulting in an error that prevents the script from running. Thus, it can be safer to load packages using the lab function, load_or_install(), rather than using library(). The load_or_install() function checks whether a package is installed. If the package is not installed, the function installs and loads the package. If the package is installed, the function loads the package. To use this function, you must have the petersenlab package loaded.

library("petersenlab")
load_or_install(c("packageName1","packageName2","packageName3"))

For example:

library("petersenlab")
load_or_install(c("tidyverse","psych"))
── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
✔ dplyr     1.1.4     ✔ readr     2.1.5
✔ forcats   1.0.0     ✔ stringr   1.5.1
✔ ggplot2   3.5.1     ✔ tibble    3.2.1
✔ lubridate 1.9.3     ✔ tidyr     1.3.1
✔ purrr     1.0.2     
── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
✖ dplyr::filter() masks stats::filter()
✖ dplyr::lag()    masks stats::lag()
ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

Attaching package: 'psych'


The following objects are masked from 'package:ggplot2':

    %+%, alpha

5 Set a Seed

Set a seed (any number) to reproduce the results of analyses that involve random number generation.

set.seed(52242)

6 Run an R Script

To run an R script, use the following syntax:

source("filepath/filename.R")

7 Render an R Markdown (.Rmd) File

To render a .Rmd file, use the following syntax:

render("filepath/filename.Rmd")

8 Variable Names

To look at the names of variables in a data frame, use the following syntax:

names(mydata)
[1] "survived"   "pclass"     "sex"        "age"        "sibsp"     
[6] "parch"      "prediction"

9 Logical Operators

Logical operators evaluate a condition for each value and yield values of TRUE and FALSE, corresponding to whether the evaluation for a given value met the condition.

9.1 Is Equal To: ==

mydata$survived == 1
   [1]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE
  [13]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
  [25] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
  [37] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
  [49] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE
  [61]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
  [73] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
  [85]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
  [97] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [109]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
 [121]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
 [133]  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [145]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [157]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
 [169] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE
 [181] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
 [193] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
 [205]  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
 [217] FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [229]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [241]  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [253] FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE
 [265] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE
 [277] FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE
 [289] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
 [301]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [313] FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
 [337]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
 [349] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
 [361]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [373]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [385]  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
 [397] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE
 [409] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
 [421] FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [433]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
 [445]  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [469] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE
 [481] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
 [493] FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
 [505] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
 [517] FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
 [529]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [541]  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [553]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [565] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
 [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [589]  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [601] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE
 [613] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [625] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [649]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE
 [661] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [673]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
 [685]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [697]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
 [709] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE
 [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
 [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [757] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [769]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE
 [781] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
 [793] FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [805] FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
 [817]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE
 [829] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [841] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
 [853] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [865] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE
 [877] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
 [889] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [901] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [925] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE
 [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [961] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
 [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [985] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE
 [997] FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
[1009] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
[1033] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
[1045] FALSE FALSE

9.2 Is Not Equal To: !=

mydata$survived != 1
   [1] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE
  [13] FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
  [25]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE
  [37]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
  [49]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE
  [61] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
  [73]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
  [85] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
  [97]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [109] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE
 [121] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE
 [133] FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [145] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [157] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE
 [169]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE
 [181]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
 [193]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE
 [205] FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE
 [217]  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [229] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [241] FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [253]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE
 [265]  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
 [277]  TRUE FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
 [289]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE
 [301] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [313]  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [325]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE
 [337] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE
 [349]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
 [361] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [373] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [385] FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE
 [397]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE
 [409]  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
 [421]  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [433] FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [445] FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [457]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [469]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE
 [481]  TRUE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE  TRUE
 [493]  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE
 [505]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE
 [517]  TRUE  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [529] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [541] FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [553] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [565]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
 [577]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [589] FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [601]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE
 [613]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [625]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [637]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [649] FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [661]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [673] FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [685] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [697] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE
 [709]  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE  TRUE FALSE  TRUE FALSE
 [721]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [733]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE
 [745]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [757]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [769] FALSE  TRUE  TRUE FALSE  TRUE FALSE  TRUE FALSE  TRUE  TRUE FALSE FALSE
 [781]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
 [793]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [805]  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [817] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE
 [829]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [841]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE
 [853]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [865]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE  TRUE
 [877]  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [889]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
 [901]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [913]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [925]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [937]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [949]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [961]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
 [973]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [985]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE
 [997]  TRUE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
[1009]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1021]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
[1033]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
[1045]  TRUE  TRUE

9.2.1 Greater Than: >

mydata$parch > 1
   [1] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [49] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
  [73] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [85] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [97] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [109]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [217] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [241]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [253] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [277]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [301] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [337] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [385] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
 [397]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [433]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [445]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [493] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [505] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [541]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [565] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [589]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [601] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [673] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [685] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [697] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [721] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [733]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [745] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [829]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [877] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [913] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [925] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [949] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [961] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [973]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
[1009] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE

9.3 Less Than: <

mydata$parch < 1
   [1]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [13]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
  [25]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
  [37]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE
  [49]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [61]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
  [73] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
  [85] FALSE FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
  [97]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [109] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
 [121]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [133]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
 [145]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [157]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
 [169]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [181]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
 [193]  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [205]  TRUE  TRUE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [217]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [229]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [241] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [253]  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [265]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [277] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [289]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [301] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [313] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [325]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [337]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE  TRUE  TRUE
 [349]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE  TRUE
 [361]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [373]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [385] FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [397] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE
 [409]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [421]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [433] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [445] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE
 [457]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [469]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [481]  TRUE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [493]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [505]  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [517]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [529]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [541] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [553]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [565]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [577]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [589] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [601]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [613]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [625] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [637]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [649]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [661]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [673] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [685]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [697]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [709]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [721]  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [733] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE  TRUE FALSE
 [745]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [757]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [769]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [781]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [793]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [805]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [817] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [829] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [841]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [853]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [865]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE
 [877]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [889]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
 [901]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [925] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [937]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [949]  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [961]  TRUE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [973] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [985]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [997]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
[1009]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
[1021]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1033]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1045]  TRUE  TRUE

9.4 Greater Than or Equal To: >=

mydata$parch >= 1
   [1] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [13] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
  [49] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
  [73]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [85]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [97] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [109]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
 [121] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [133] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [169] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
 [193] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [205] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [217] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [241]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [253] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [265] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [277]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [301]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [313]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [337] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
 [349] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
 [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [385]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [397]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
 [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [433]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [445]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [481] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [493] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [505] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [529] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [541]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [553] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [565] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [589]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [601] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [625]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [673]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [685] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [697] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [721] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [733]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
 [745] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [793] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [817]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [829]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
 [877] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
 [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [913]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [925]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [937] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [949] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [961] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [973]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [985] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [997] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
[1009] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE

9.5 Less Than or Equal To: <=

mydata$parch <= 1
   [1]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [13]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [25]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [37]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [49]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [61]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
  [73]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
  [85]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [97]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [109] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [121]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [133]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [145]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [157]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [169]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [181]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [193]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [205]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [217]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [229]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [241] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [253]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [265]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [277] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [289]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [301]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [313]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [325]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [337]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [349]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [361]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [373]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [385]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
 [397] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [409]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [421]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [433] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [445] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [457]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [469]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [481]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [493]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [505]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [517]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [529]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [541] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [553]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [565]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [577]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [589] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [601]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [613]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [625]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [637]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [649]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [661]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [673]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [685]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [697]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [709]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [721]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [733] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [745]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [757]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [769]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [781]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [793]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [805]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [817]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [829] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [841]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [853]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [865]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [877]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [889]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [901]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [913]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [925]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [937]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [949]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [961]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [973] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [985]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [997]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
[1009]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1021]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1033]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1045]  TRUE  TRUE

9.6 Is in a Value of Another Vector: %in%

anotherVector <- c(0,1)
mydata$parch %in% anotherVector
   [1]  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [13]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [25]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [37]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [49]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [61]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
  [73]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
  [85]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
  [97]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [109] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [121]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [133]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [145]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [157]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [169]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [181]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [193]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [205]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [217]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [229]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [241] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [253]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [265]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [277] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [289]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [301]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [313]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [325]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [337]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [349]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [361]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [373]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [385]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE
 [397] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [409]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [421]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [433] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [445] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [457]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [469]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [481]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE
 [493]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [505]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [517]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [529]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [541] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [553]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [565]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [577]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [589] FALSE FALSE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [601]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [613]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [625]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [637]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [649]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [661]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [673]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [685]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [697]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [709]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [721]  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [733] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE
 [745]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [757]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [769]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [781]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [793]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [805]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [817]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [829] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [841]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [853]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [865]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [877]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [889]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [901]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [913]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [925]  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [937]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [949]  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE
 [961]  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [973] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [985]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [997]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
[1009]  TRUE  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1021]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1033]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
[1045]  TRUE  TRUE

9.7 Is Not in a Value of Another Vector: %ni%

Note: this function is part of the petersenlab package and is not available in base R.

mydata$parch %ni% anotherVector
   [1] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [49] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
  [73] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [85] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [97] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [109]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [217] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [241]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [253] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [277]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [301] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [337] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [385] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
 [397]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [433]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [445]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [493] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [505] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [541]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE
 [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [565] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [589]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [601] FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [673] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [685] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [697] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [721] FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [733]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE
 [745] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [829]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [877] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [913] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE
 [925] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [949] FALSE FALSE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [961] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [973]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
[1009] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE

9.8 Is Missing: is.na()

is.na(mydata$prediction)
   [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [13] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [49] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [73] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [85] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [97] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [109] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [133] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [169] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [193] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [205] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [217] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [241] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [253] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [265] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [277] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [301] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [313] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [325] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [337] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [349] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [385] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [397] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [433] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [445] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [469] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [481] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [493] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [505] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [529] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [541] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [553] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [565] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [577] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [589] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [601] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [625] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [673] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [685] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [697] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [721] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [733] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [745] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [793] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [817] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [829] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [877] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [913] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [925] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [937] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [949] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [961] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [973] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [985] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [997] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1009] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE

9.9 Is Not Missing: !is.na()

!is.na(mydata$prediction)
   [1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
  [15] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
  [29] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
  [43] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
  [57] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
  [71] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
  [85] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
  [99] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [113] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [127] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [141] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [155] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [169] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [183] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [197] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [211] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [225] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [239] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [253] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [267] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [281] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [295] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [309] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [323] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [337] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [351] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [365] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [379] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [393] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [407] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [421] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [435] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [449] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [463] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [477] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [491] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [505] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [519] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [533] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [547] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [561] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [575] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [589] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [603] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [617] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [631] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [645] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [659] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [673] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [687] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [701] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [715] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [729] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [743] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [757] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [771] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [785] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [799] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [813] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [827] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [841] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [855] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [869] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [883] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [897] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [911] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [925] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [939] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [953] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [967] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [981] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
 [995] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1009] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1023] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[1037] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

9.10 And: &

!is.na(mydata$prediction) & mydata$parch >= 1
   [1] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [13] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
  [49] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
  [73]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [85]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [97] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [109]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
 [121] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [133] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [169] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
 [193] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [205] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [217] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [241]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [253] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [265] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [277]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [301]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [313]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [337] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
 [349] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
 [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [385]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [397]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
 [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [433]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [445]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [481] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [493] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [505] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [529] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [541]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [553] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [565] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [589]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [601] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [625]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [673]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [685] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [697] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [721] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [733]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
 [745] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [793] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [817]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [829]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
 [877] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
 [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [913]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [925]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [937] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [949] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [961] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [973]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [985] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [997] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
[1009] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE

9.11 Or: |

is.na(mydata$prediction) | mydata$parch >= 1
   [1] FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
  [13] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
  [25] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
  [37] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE
  [49] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
  [61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
  [73]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [85]  TRUE  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
  [97] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [109]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
 [121] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [133] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [145] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [157] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [169] FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [181] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE  TRUE  TRUE
 [193] FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [205] FALSE FALSE  TRUE FALSE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [217] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [229] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [241]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [253] FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [265] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE  TRUE
 [277]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [289] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [301]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE
 [313]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [325] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE
 [337] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE FALSE  TRUE FALSE FALSE
 [349] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE  TRUE  TRUE FALSE
 [361] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [373] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [385]  TRUE  TRUE FALSE  TRUE  TRUE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [397]  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE  TRUE FALSE
 [409] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [421] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [433]  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [445]  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE
 [457] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [469] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
 [481] FALSE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE
 [493] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [505] FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [517] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [529] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
 [541]  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [553] FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [565] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE
 [577] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE
 [589]  TRUE  TRUE FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [601] FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [613] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [625]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [637] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [649] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [661] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [673]  TRUE  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [685] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [697] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [709] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [721] FALSE FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [733]  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE  TRUE FALSE  TRUE
 [745] FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE
 [757] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [769] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE
 [781] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [793] FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [805] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [817]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE
 [829]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [841] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [853] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [865] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE
 [877] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [889] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE  TRUE
 [901] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
 [913]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE  TRUE
 [925]  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [937] FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE
 [949] FALSE FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE FALSE FALSE
 [961] FALSE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
 [973]  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE
 [985] FALSE FALSE FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE
 [997] FALSE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE  TRUE  TRUE  TRUE
[1009] FALSE FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE FALSE FALSE FALSE FALSE
[1021] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1033] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[1045] FALSE FALSE

10 Subset

To subset a data frame, use brackets to specify the subset of rows and columns to keep, where the value/vector before the comma specifies the rows to keep, and the value/vector after the comma specifies the columns to keep:

dataframe[rowsToKeep, columnsToKeep]

You can subset by using any of the following:

  • numeric indices of the rows/columns to keep (or drop)
  • names of the rows/columns to keep (or drop)
  • values of TRUE and FALSE corresponding to which rows/columns to keep

10.1 One Variable

To subset one variable, use the following syntax:

mydata$age
   [1] 29.00  0.92  2.00 30.00 25.00 48.00 63.00 39.00 53.00 71.00 47.00 18.00
  [13] 24.00 26.00 80.00 24.00 50.00 32.00 36.00 37.00 47.00 26.00 42.00 29.00
  [25] 25.00 25.00 19.00 35.00 28.00 45.00 40.00 30.00 58.00 42.00 45.00 22.00
  [37] 41.00 48.00 44.00 59.00 60.00 41.00 45.00 42.00 53.00 36.00 58.00 33.00
  [49] 28.00 17.00 11.00 14.00 36.00 36.00 49.00 36.00 76.00 46.00 47.00 27.00
  [61] 33.00 36.00 30.00 45.00 27.00 26.00 22.00 47.00 39.00 37.00 64.00 55.00
  [73] 70.00 36.00 64.00 39.00 38.00 51.00 27.00 33.00 31.00 27.00 31.00 17.00
  [85] 53.00  4.00 54.00 50.00 27.00 48.00 48.00 49.00 39.00 23.00 38.00 54.00
  [97] 36.00 36.00 30.00 24.00 28.00 23.00 19.00 64.00 60.00 30.00 50.00 43.00
 [109] 22.00 60.00 48.00 37.00 35.00 47.00 35.00 22.00 45.00 24.00 49.00 71.00
 [121] 53.00 19.00 38.00 58.00 23.00 45.00 46.00 25.00 25.00 48.00 49.00 45.00
 [133] 35.00 40.00 27.00 24.00 55.00 52.00 42.00 55.00 16.00 44.00 51.00 42.00
 [145] 35.00 35.00 38.00 35.00 38.00 50.00 49.00 46.00 50.00 32.50 58.00 41.00
 [157] 42.00 45.00 39.00 49.00 30.00 35.00 42.00 55.00 16.00 51.00 29.00 21.00
 [169] 30.00 58.00 15.00 30.00 16.00 19.00 18.00 24.00 46.00 54.00 36.00 28.00
 [181] 65.00 44.00 33.00 37.00 30.00 55.00 47.00 37.00 31.00 23.00 58.00 19.00
 [193] 64.00 39.00 22.00 65.00 28.50 45.50 23.00 29.00 22.00 18.00 17.00 30.00
 [205] 52.00 47.00 56.00 38.00 22.00 43.00 31.00 45.00 33.00 46.00 36.00 33.00
 [217] 55.00 54.00 33.00 13.00 18.00 21.00 61.00 48.00 24.00 35.00 30.00 34.00
 [229] 40.00 35.00 50.00 39.00 56.00 28.00 56.00 56.00 24.00 18.00 24.00 23.00
 [241]  6.00 45.00 40.00 57.00 32.00 62.00 54.00 43.00 52.00 62.00 67.00 63.00
 [253] 61.00 48.00 18.00 52.00 39.00 48.00 49.00 17.00 39.00 31.00 40.00 61.00
 [265] 47.00 35.00 64.00 60.00 60.00 54.00 21.00 55.00 31.00 57.00 45.00 50.00
 [277] 27.00 50.00 21.00 51.00 21.00 31.00 62.00 36.00 30.00 28.00 30.00 18.00
 [289] 25.00 34.00 36.00 57.00 18.00 23.00 36.00 28.00 51.00 32.00 19.00 28.00
 [301]  1.00  4.00 12.00 36.00 34.00 19.00 23.00 26.00 42.00 27.00 24.00 15.00
 [313] 60.00 40.00 20.00 25.00 36.00 25.00 42.00 42.00  0.83 26.00 22.00 35.00
 [325] 19.00 44.00 54.00 52.00 37.00 29.00 25.00 45.00 29.00 28.00 29.00 28.00
 [337] 24.00  8.00 31.00 31.00 22.00 30.00 21.00  8.00 18.00 48.00 28.00 32.00
 [349] 17.00 29.00 24.00 25.00 18.00 18.00 34.00 54.00  8.00 42.00 34.00 27.00
 [361] 30.00 23.00 21.00 18.00 40.00 29.00 18.00 36.00 38.00 35.00 38.00 34.00
 [373] 34.00 16.00 26.00 47.00 21.00 21.00 24.00 24.00 34.00 30.00 52.00 30.00
 [385]  0.67 24.00 44.00  6.00 28.00 62.00 30.00  7.00 43.00 45.00 24.00 24.00
 [397] 49.00 48.00 55.00 24.00 32.00 21.00 18.00 20.00 23.00 36.00 54.00 50.00
 [409] 44.00 29.00 21.00 42.00 63.00 60.00 33.00 17.00 42.00 24.00 47.00 24.00
 [421] 22.00 32.00 23.00 34.00 24.00 22.00 35.00 45.00 57.00 31.00 26.00 30.00
 [433]  1.00  3.00 25.00 22.00 17.00 34.00 36.00 24.00 61.00 50.00 42.00 57.00
 [445]  1.00 31.00 24.00 30.00 40.00 32.00 30.00 46.00 13.00 41.00 19.00 39.00
 [457] 48.00 70.00 27.00 54.00 39.00 16.00 62.00 32.50 14.00  2.00  3.00 36.50
 [469] 26.00 19.00 28.00 20.00 29.00 39.00 22.00 23.00 29.00 28.00 50.00 19.00
 [481] 41.00 21.00 19.00 43.00 32.00 34.00 30.00 27.00  2.00  8.00 33.00 36.00
 [493] 34.00 30.00 28.00 23.00  0.83  3.00 24.00 50.00 19.00 21.00 26.00 25.00
 [505] 27.00 25.00 18.00 20.00 30.00 59.00 30.00 35.00 40.00 25.00 41.00 25.00
 [517] 18.50 14.00 50.00 23.00 28.00 27.00 29.00 27.00 40.00 31.00 30.00 23.00
 [529] 31.00 12.00 40.00 32.50 27.00 29.00  2.00  4.00 29.00  0.92  5.00 36.00
 [541] 33.00 66.00 31.00 26.00 24.00 42.00 13.00 16.00 35.00 16.00 25.00 20.00
 [553] 18.00 30.00 26.00 40.00  0.83 18.00 26.00 26.00 20.00 24.00 25.00 35.00
 [565] 18.00 32.00 19.00  4.00  6.00  2.00 17.00 38.00  9.00 11.00 39.00 27.00
 [577] 26.00 39.00 20.00 26.00 25.00 18.00 24.00 35.00  5.00  9.00  3.00 13.00
 [589]  5.00 40.00 23.00 38.00 45.00 21.00 23.00 17.00 30.00 23.00 13.00 20.00
 [601] 32.00 33.00  0.75  0.75  5.00 24.00 18.00 40.00 26.00 20.00 18.00 45.00
 [613] 27.00 22.00 19.00 26.00 22.00 20.00 32.00 21.00 18.00 26.00  6.00  9.00
 [625] 40.00 32.00 21.00 22.00 20.00 29.00 22.00 22.00 35.00 18.50 21.00 19.00
 [637] 18.00 21.00 30.00 18.00 38.00 17.00 17.00 21.00 21.00 21.00 28.00 24.00
 [649] 16.00 37.00 28.00 24.00 21.00 32.00 29.00 26.00 18.00 20.00 18.00 24.00
 [661] 36.00 24.00 31.00 31.00 22.00 30.00 70.50 43.00 35.00 27.00 19.00 30.00
 [673]  9.00  3.00 36.00 59.00 19.00 17.00 44.00 17.00 22.50 45.00 22.00 19.00
 [685] 30.00 29.00  0.33 34.00 28.00 27.00 25.00 24.00 22.00 21.00 17.00 36.50
 [697] 36.00 30.00 16.00  1.00  0.17 26.00 33.00 25.00 22.00 36.00 19.00 17.00
 [709] 42.00 43.00 32.00 19.00 30.00 24.00 23.00 33.00 65.00 24.00 23.00 22.00
 [721] 18.00 16.00 45.00 39.00 17.00 15.00 47.00  5.00 40.50 40.50 18.00 26.00
 [733] 21.00  9.00 18.00 16.00 48.00 25.00 22.00 16.00  9.00 33.00 41.00 31.00
 [745] 38.00  9.00  1.00 11.00 10.00 16.00 14.00 40.00 43.00 51.00 32.00 20.00
 [757] 37.00 28.00 19.00 24.00 17.00 28.00 24.00 20.00 23.50 41.00 26.00 21.00
 [769] 45.00 25.00 11.00 27.00 18.00 26.00 23.00 22.00 28.00 28.00  2.00 22.00
 [781] 43.00 28.00 27.00 42.00 30.00 27.00 25.00 29.00 21.00 20.00 48.00 17.00
 [793] 34.00 26.00 22.00 33.00 31.00 29.00  4.00  1.00 49.00 33.00 19.00 27.00
 [805] 23.00 32.00 27.00 20.00 21.00 32.00 17.00 21.00 30.00 21.00 33.00 22.00
 [817]  4.00 39.00 18.50 34.50 44.00 22.00 26.00  4.00 29.00 26.00  1.00 18.00
 [829] 36.00 25.00 37.00 22.00 26.00 29.00 29.00 22.00 22.00 32.00 34.50 36.00
 [841] 39.00 24.00 25.00 45.00 36.00 30.00 20.00 28.00 30.00 26.00 20.50 27.00
 [853] 51.00 23.00 32.00 24.00 22.00 29.00 30.50 35.00 33.00 15.00 35.00 24.00
 [865] 19.00 55.50 21.00 24.00 21.00 28.00 25.00  6.00 27.00 34.00 24.00 18.00
 [877] 22.00 15.00  1.00 20.00 19.00 33.00 12.00 14.00 29.00 28.00 18.00 26.00
 [889] 21.00 41.00 39.00 21.00 28.50 22.00 61.00 23.00 22.00  9.00 28.00 42.00
 [901] 31.00 28.00 32.00 20.00 23.00 20.00 20.00 16.00 31.00  2.00  6.00  3.00
 [913]  8.00 29.00  1.00  7.00  2.00 16.00 14.00 41.00 21.00 19.00 32.00  0.75
 [925]  3.00 26.00 21.00 25.00 22.00 25.00 24.00 28.00 19.00 25.00 18.00 32.00
 [937] 17.00 24.00 38.00 21.00 10.00  4.00  7.00  2.00  8.00 39.00 22.00 35.00
 [949] 50.00 47.00  2.00 18.00 41.00 50.00 16.00 25.00 38.50 14.50 24.00 21.00
 [961] 39.00  1.00 24.00  4.00 25.00 20.00 24.50 29.00 22.00 40.00 21.00 18.00
 [973]  4.00 10.00  9.00  2.00 40.00 45.00 19.00 30.00 32.00 33.00 23.00 21.00
 [985] 60.50 19.00 22.00 31.00 27.00  2.00 29.00 16.00 44.00 25.00 74.00 14.00
 [997] 24.00 25.00 34.00  0.42 16.00 32.00 30.50 44.00 25.00  7.00  9.00 29.00
[1009] 36.00 18.00 63.00 11.50 40.50 10.00 36.00 30.00 33.00 28.00 28.00 47.00
[1021] 18.00 31.00 16.00 31.00 22.00 20.00 14.00 22.00 22.00 32.50 38.00 51.00
[1033] 18.00 21.00 47.00 28.50 21.00 27.00 36.00 27.00 15.00 45.50 14.50 26.50
[1045] 27.00 29.00

or:

mydata[,"age"]
   [1] 29.00  0.92  2.00 30.00 25.00 48.00 63.00 39.00 53.00 71.00 47.00 18.00
  [13] 24.00 26.00 80.00 24.00 50.00 32.00 36.00 37.00 47.00 26.00 42.00 29.00
  [25] 25.00 25.00 19.00 35.00 28.00 45.00 40.00 30.00 58.00 42.00 45.00 22.00
  [37] 41.00 48.00 44.00 59.00 60.00 41.00 45.00 42.00 53.00 36.00 58.00 33.00
  [49] 28.00 17.00 11.00 14.00 36.00 36.00 49.00 36.00 76.00 46.00 47.00 27.00
  [61] 33.00 36.00 30.00 45.00 27.00 26.00 22.00 47.00 39.00 37.00 64.00 55.00
  [73] 70.00 36.00 64.00 39.00 38.00 51.00 27.00 33.00 31.00 27.00 31.00 17.00
  [85] 53.00  4.00 54.00 50.00 27.00 48.00 48.00 49.00 39.00 23.00 38.00 54.00
  [97] 36.00 36.00 30.00 24.00 28.00 23.00 19.00 64.00 60.00 30.00 50.00 43.00
 [109] 22.00 60.00 48.00 37.00 35.00 47.00 35.00 22.00 45.00 24.00 49.00 71.00
 [121] 53.00 19.00 38.00 58.00 23.00 45.00 46.00 25.00 25.00 48.00 49.00 45.00
 [133] 35.00 40.00 27.00 24.00 55.00 52.00 42.00 55.00 16.00 44.00 51.00 42.00
 [145] 35.00 35.00 38.00 35.00 38.00 50.00 49.00 46.00 50.00 32.50 58.00 41.00
 [157] 42.00 45.00 39.00 49.00 30.00 35.00 42.00 55.00 16.00 51.00 29.00 21.00
 [169] 30.00 58.00 15.00 30.00 16.00 19.00 18.00 24.00 46.00 54.00 36.00 28.00
 [181] 65.00 44.00 33.00 37.00 30.00 55.00 47.00 37.00 31.00 23.00 58.00 19.00
 [193] 64.00 39.00 22.00 65.00 28.50 45.50 23.00 29.00 22.00 18.00 17.00 30.00
 [205] 52.00 47.00 56.00 38.00 22.00 43.00 31.00 45.00 33.00 46.00 36.00 33.00
 [217] 55.00 54.00 33.00 13.00 18.00 21.00 61.00 48.00 24.00 35.00 30.00 34.00
 [229] 40.00 35.00 50.00 39.00 56.00 28.00 56.00 56.00 24.00 18.00 24.00 23.00
 [241]  6.00 45.00 40.00 57.00 32.00 62.00 54.00 43.00 52.00 62.00 67.00 63.00
 [253] 61.00 48.00 18.00 52.00 39.00 48.00 49.00 17.00 39.00 31.00 40.00 61.00
 [265] 47.00 35.00 64.00 60.00 60.00 54.00 21.00 55.00 31.00 57.00 45.00 50.00
 [277] 27.00 50.00 21.00 51.00 21.00 31.00 62.00 36.00 30.00 28.00 30.00 18.00
 [289] 25.00 34.00 36.00 57.00 18.00 23.00 36.00 28.00 51.00 32.00 19.00 28.00
 [301]  1.00  4.00 12.00 36.00 34.00 19.00 23.00 26.00 42.00 27.00 24.00 15.00
 [313] 60.00 40.00 20.00 25.00 36.00 25.00 42.00 42.00  0.83 26.00 22.00 35.00
 [325] 19.00 44.00 54.00 52.00 37.00 29.00 25.00 45.00 29.00 28.00 29.00 28.00
 [337] 24.00  8.00 31.00 31.00 22.00 30.00 21.00  8.00 18.00 48.00 28.00 32.00
 [349] 17.00 29.00 24.00 25.00 18.00 18.00 34.00 54.00  8.00 42.00 34.00 27.00
 [361] 30.00 23.00 21.00 18.00 40.00 29.00 18.00 36.00 38.00 35.00 38.00 34.00
 [373] 34.00 16.00 26.00 47.00 21.00 21.00 24.00 24.00 34.00 30.00 52.00 30.00
 [385]  0.67 24.00 44.00  6.00 28.00 62.00 30.00  7.00 43.00 45.00 24.00 24.00
 [397] 49.00 48.00 55.00 24.00 32.00 21.00 18.00 20.00 23.00 36.00 54.00 50.00
 [409] 44.00 29.00 21.00 42.00 63.00 60.00 33.00 17.00 42.00 24.00 47.00 24.00
 [421] 22.00 32.00 23.00 34.00 24.00 22.00 35.00 45.00 57.00 31.00 26.00 30.00
 [433]  1.00  3.00 25.00 22.00 17.00 34.00 36.00 24.00 61.00 50.00 42.00 57.00
 [445]  1.00 31.00 24.00 30.00 40.00 32.00 30.00 46.00 13.00 41.00 19.00 39.00
 [457] 48.00 70.00 27.00 54.00 39.00 16.00 62.00 32.50 14.00  2.00  3.00 36.50
 [469] 26.00 19.00 28.00 20.00 29.00 39.00 22.00 23.00 29.00 28.00 50.00 19.00
 [481] 41.00 21.00 19.00 43.00 32.00 34.00 30.00 27.00  2.00  8.00 33.00 36.00
 [493] 34.00 30.00 28.00 23.00  0.83  3.00 24.00 50.00 19.00 21.00 26.00 25.00
 [505] 27.00 25.00 18.00 20.00 30.00 59.00 30.00 35.00 40.00 25.00 41.00 25.00
 [517] 18.50 14.00 50.00 23.00 28.00 27.00 29.00 27.00 40.00 31.00 30.00 23.00
 [529] 31.00 12.00 40.00 32.50 27.00 29.00  2.00  4.00 29.00  0.92  5.00 36.00
 [541] 33.00 66.00 31.00 26.00 24.00 42.00 13.00 16.00 35.00 16.00 25.00 20.00
 [553] 18.00 30.00 26.00 40.00  0.83 18.00 26.00 26.00 20.00 24.00 25.00 35.00
 [565] 18.00 32.00 19.00  4.00  6.00  2.00 17.00 38.00  9.00 11.00 39.00 27.00
 [577] 26.00 39.00 20.00 26.00 25.00 18.00 24.00 35.00  5.00  9.00  3.00 13.00
 [589]  5.00 40.00 23.00 38.00 45.00 21.00 23.00 17.00 30.00 23.00 13.00 20.00
 [601] 32.00 33.00  0.75  0.75  5.00 24.00 18.00 40.00 26.00 20.00 18.00 45.00
 [613] 27.00 22.00 19.00 26.00 22.00 20.00 32.00 21.00 18.00 26.00  6.00  9.00
 [625] 40.00 32.00 21.00 22.00 20.00 29.00 22.00 22.00 35.00 18.50 21.00 19.00
 [637] 18.00 21.00 30.00 18.00 38.00 17.00 17.00 21.00 21.00 21.00 28.00 24.00
 [649] 16.00 37.00 28.00 24.00 21.00 32.00 29.00 26.00 18.00 20.00 18.00 24.00
 [661] 36.00 24.00 31.00 31.00 22.00 30.00 70.50 43.00 35.00 27.00 19.00 30.00
 [673]  9.00  3.00 36.00 59.00 19.00 17.00 44.00 17.00 22.50 45.00 22.00 19.00
 [685] 30.00 29.00  0.33 34.00 28.00 27.00 25.00 24.00 22.00 21.00 17.00 36.50
 [697] 36.00 30.00 16.00  1.00  0.17 26.00 33.00 25.00 22.00 36.00 19.00 17.00
 [709] 42.00 43.00 32.00 19.00 30.00 24.00 23.00 33.00 65.00 24.00 23.00 22.00
 [721] 18.00 16.00 45.00 39.00 17.00 15.00 47.00  5.00 40.50 40.50 18.00 26.00
 [733] 21.00  9.00 18.00 16.00 48.00 25.00 22.00 16.00  9.00 33.00 41.00 31.00
 [745] 38.00  9.00  1.00 11.00 10.00 16.00 14.00 40.00 43.00 51.00 32.00 20.00
 [757] 37.00 28.00 19.00 24.00 17.00 28.00 24.00 20.00 23.50 41.00 26.00 21.00
 [769] 45.00 25.00 11.00 27.00 18.00 26.00 23.00 22.00 28.00 28.00  2.00 22.00
 [781] 43.00 28.00 27.00 42.00 30.00 27.00 25.00 29.00 21.00 20.00 48.00 17.00
 [793] 34.00 26.00 22.00 33.00 31.00 29.00  4.00  1.00 49.00 33.00 19.00 27.00
 [805] 23.00 32.00 27.00 20.00 21.00 32.00 17.00 21.00 30.00 21.00 33.00 22.00
 [817]  4.00 39.00 18.50 34.50 44.00 22.00 26.00  4.00 29.00 26.00  1.00 18.00
 [829] 36.00 25.00 37.00 22.00 26.00 29.00 29.00 22.00 22.00 32.00 34.50 36.00
 [841] 39.00 24.00 25.00 45.00 36.00 30.00 20.00 28.00 30.00 26.00 20.50 27.00
 [853] 51.00 23.00 32.00 24.00 22.00 29.00 30.50 35.00 33.00 15.00 35.00 24.00
 [865] 19.00 55.50 21.00 24.00 21.00 28.00 25.00  6.00 27.00 34.00 24.00 18.00
 [877] 22.00 15.00  1.00 20.00 19.00 33.00 12.00 14.00 29.00 28.00 18.00 26.00
 [889] 21.00 41.00 39.00 21.00 28.50 22.00 61.00 23.00 22.00  9.00 28.00 42.00
 [901] 31.00 28.00 32.00 20.00 23.00 20.00 20.00 16.00 31.00  2.00  6.00  3.00
 [913]  8.00 29.00  1.00  7.00  2.00 16.00 14.00 41.00 21.00 19.00 32.00  0.75
 [925]  3.00 26.00 21.00 25.00 22.00 25.00 24.00 28.00 19.00 25.00 18.00 32.00
 [937] 17.00 24.00 38.00 21.00 10.00  4.00  7.00  2.00  8.00 39.00 22.00 35.00
 [949] 50.00 47.00  2.00 18.00 41.00 50.00 16.00 25.00 38.50 14.50 24.00 21.00
 [961] 39.00  1.00 24.00  4.00 25.00 20.00 24.50 29.00 22.00 40.00 21.00 18.00
 [973]  4.00 10.00  9.00  2.00 40.00 45.00 19.00 30.00 32.00 33.00 23.00 21.00
 [985] 60.50 19.00 22.00 31.00 27.00  2.00 29.00 16.00 44.00 25.00 74.00 14.00
 [997] 24.00 25.00 34.00  0.42 16.00 32.00 30.50 44.00 25.00  7.00  9.00 29.00
[1009] 36.00 18.00 63.00 11.50 40.50 10.00 36.00 30.00 33.00 28.00 28.00 47.00
[1021] 18.00 31.00 16.00 31.00 22.00 20.00 14.00 22.00 22.00 32.50 38.00 51.00
[1033] 18.00 21.00 47.00 28.50 21.00 27.00 36.00 27.00 15.00 45.50 14.50 26.50
[1045] 27.00 29.00

10.2 Particular Rows of One Variable

To subset one variable, use the following syntax:

mydata$age[which(mydata$survived == 1)]
  [1] 29.00  0.92 48.00 63.00 53.00 18.00 24.00 26.00 80.00 50.00 32.00 37.00
 [13] 47.00 26.00 42.00 29.00 25.00 19.00 35.00 28.00 40.00 30.00 58.00 45.00
 [25] 22.00 44.00 59.00 60.00 41.00 42.00 53.00 36.00 58.00 11.00 14.00 36.00
 [37] 36.00 76.00 47.00 27.00 33.00 36.00 30.00 45.00 26.00 22.00 39.00 64.00
 [49] 55.00 36.00 64.00 38.00 51.00 27.00 33.00 27.00 31.00 17.00 53.00  4.00
 [61] 54.00 27.00 48.00 48.00 49.00 23.00 38.00 54.00 36.00 24.00 28.00 23.00
 [73] 60.00 30.00 50.00 43.00 22.00 60.00 48.00 35.00 35.00 22.00 45.00 49.00
 [85] 53.00 19.00 58.00 23.00 45.00 25.00 25.00 48.00 49.00 35.00 27.00 24.00
 [97] 52.00 16.00 44.00 51.00 35.00 35.00 38.00 35.00 38.00 49.00 42.00 45.00
[109] 39.00 49.00 30.00 35.00 55.00 16.00 51.00 21.00 58.00 15.00 16.00 18.00
[121] 24.00 36.00 33.00 37.00 30.00 31.00 23.00 19.00 39.00 22.00 22.00 17.00
[133] 30.00 52.00 56.00 43.00 45.00 33.00 33.00 54.00 13.00 18.00 21.00 48.00
[145] 24.00 35.00 30.00 34.00 40.00 35.00 39.00 56.00 28.00 18.00 24.00 23.00
[157]  6.00 45.00 40.00 32.00 54.00 43.00 52.00 62.00 48.00 18.00 39.00 48.00
[169] 17.00 39.00 31.00 35.00 60.00 55.00 31.00 45.00 50.00 21.00 21.00 31.00
[181] 36.00 28.00 36.00 36.00 32.00 19.00  1.00  4.00 12.00 36.00 34.00 19.00
[193] 24.00 15.00 40.00 20.00 36.00 42.00  0.83 26.00 22.00 35.00 25.00 45.00
[205] 28.00 24.00  8.00 31.00 22.00  8.00 48.00 28.00 24.00 18.00 34.00  8.00
[217] 34.00 27.00 30.00 29.00 34.00  0.67 24.00  6.00 62.00  7.00 45.00 24.00
[229] 24.00 48.00 55.00 20.00 54.00 29.00 42.00 17.00 24.00 23.00 24.00 45.00
[241]  1.00  3.00 22.00 17.00 34.00 42.00  1.00 24.00 13.00 41.00 19.00 14.00
[253]  2.00  3.00 20.00 29.00 22.00 29.00 50.00 21.00 19.00 32.00 30.00  2.00
[265]  8.00 33.00 30.00 28.00  0.83  3.00 24.00 50.00 21.00 25.00 18.00 20.00
[277] 30.00 30.00 40.00 50.00 28.00 27.00 31.00 31.00 12.00 40.00 32.50 29.00
[289]  2.00  4.00 29.00  0.92  5.00 33.00 31.00 26.00 35.00 16.00 25.00 20.00
[301] 18.00  0.83 18.00 26.00 19.00 17.00 27.00  3.00  5.00 23.00 38.00 45.00
[313] 13.00 33.00  0.75  0.75  5.00 24.00 18.00 20.00 32.00 22.00 21.00 16.00
[325] 32.00 18.00 22.00  9.00  3.00 36.00 17.00 45.00 30.00 29.00 36.50 36.00
[337] 30.00  1.00  0.17 33.00 19.00 19.00 30.00 23.00 24.00 22.00  5.00 16.00
[349]  9.00 31.00 24.00 45.00 27.00 26.00 22.00  2.00 22.00 27.00 29.00 21.00
[361] 26.00  4.00  1.00 27.00 32.00 32.00 21.00  4.00 39.00  4.00 29.00 26.00
[373] 25.00 22.00 26.00 22.00 20.00 27.00 23.00 32.00 24.00 15.00 21.00  6.00
[385] 27.00 24.00 15.00  1.00 20.00 19.00 12.00 14.00 18.00 26.00 39.00 22.00
[397] 22.00  9.00 32.00 31.00 25.00 32.00 21.00  1.00 24.00  4.00 25.00 29.00
[409] 18.00 23.00 31.00 16.00 44.00 14.00 25.00  0.42 16.00 25.00  7.00  9.00
[421] 29.00 18.00 63.00 22.00 38.00 47.00 15.00

or:

mydata[which(mydata$survived == 1), "age"]
  [1] 29.00  0.92 48.00 63.00 53.00 18.00 24.00 26.00 80.00 50.00 32.00 37.00
 [13] 47.00 26.00 42.00 29.00 25.00 19.00 35.00 28.00 40.00 30.00 58.00 45.00
 [25] 22.00 44.00 59.00 60.00 41.00 42.00 53.00 36.00 58.00 11.00 14.00 36.00
 [37] 36.00 76.00 47.00 27.00 33.00 36.00 30.00 45.00 26.00 22.00 39.00 64.00
 [49] 55.00 36.00 64.00 38.00 51.00 27.00 33.00 27.00 31.00 17.00 53.00  4.00
 [61] 54.00 27.00 48.00 48.00 49.00 23.00 38.00 54.00 36.00 24.00 28.00 23.00
 [73] 60.00 30.00 50.00 43.00 22.00 60.00 48.00 35.00 35.00 22.00 45.00 49.00
 [85] 53.00 19.00 58.00 23.00 45.00 25.00 25.00 48.00 49.00 35.00 27.00 24.00
 [97] 52.00 16.00 44.00 51.00 35.00 35.00 38.00 35.00 38.00 49.00 42.00 45.00
[109] 39.00 49.00 30.00 35.00 55.00 16.00 51.00 21.00 58.00 15.00 16.00 18.00
[121] 24.00 36.00 33.00 37.00 30.00 31.00 23.00 19.00 39.00 22.00 22.00 17.00
[133] 30.00 52.00 56.00 43.00 45.00 33.00 33.00 54.00 13.00 18.00 21.00 48.00
[145] 24.00 35.00 30.00 34.00 40.00 35.00 39.00 56.00 28.00 18.00 24.00 23.00
[157]  6.00 45.00 40.00 32.00 54.00 43.00 52.00 62.00 48.00 18.00 39.00 48.00
[169] 17.00 39.00 31.00 35.00 60.00 55.00 31.00 45.00 50.00 21.00 21.00 31.00
[181] 36.00 28.00 36.00 36.00 32.00 19.00  1.00  4.00 12.00 36.00 34.00 19.00
[193] 24.00 15.00 40.00 20.00 36.00 42.00  0.83 26.00 22.00 35.00 25.00 45.00
[205] 28.00 24.00  8.00 31.00 22.00  8.00 48.00 28.00 24.00 18.00 34.00  8.00
[217] 34.00 27.00 30.00 29.00 34.00  0.67 24.00  6.00 62.00  7.00 45.00 24.00
[229] 24.00 48.00 55.00 20.00 54.00 29.00 42.00 17.00 24.00 23.00 24.00 45.00
[241]  1.00  3.00 22.00 17.00 34.00 42.00  1.00 24.00 13.00 41.00 19.00 14.00
[253]  2.00  3.00 20.00 29.00 22.00 29.00 50.00 21.00 19.00 32.00 30.00  2.00
[265]  8.00 33.00 30.00 28.00  0.83  3.00 24.00 50.00 21.00 25.00 18.00 20.00
[277] 30.00 30.00 40.00 50.00 28.00 27.00 31.00 31.00 12.00 40.00 32.50 29.00
[289]  2.00  4.00 29.00  0.92  5.00 33.00 31.00 26.00 35.00 16.00 25.00 20.00
[301] 18.00  0.83 18.00 26.00 19.00 17.00 27.00  3.00  5.00 23.00 38.00 45.00
[313] 13.00 33.00  0.75  0.75  5.00 24.00 18.00 20.00 32.00 22.00 21.00 16.00
[325] 32.00 18.00 22.00  9.00  3.00 36.00 17.00 45.00 30.00 29.00 36.50 36.00
[337] 30.00  1.00  0.17 33.00 19.00 19.00 30.00 23.00 24.00 22.00  5.00 16.00
[349]  9.00 31.00 24.00 45.00 27.00 26.00 22.00  2.00 22.00 27.00 29.00 21.00
[361] 26.00  4.00  1.00 27.00 32.00 32.00 21.00  4.00 39.00  4.00 29.00 26.00
[373] 25.00 22.00 26.00 22.00 20.00 27.00 23.00 32.00 24.00 15.00 21.00  6.00
[385] 27.00 24.00 15.00  1.00 20.00 19.00 12.00 14.00 18.00 26.00 39.00 22.00
[397] 22.00  9.00 32.00 31.00 25.00 32.00 21.00  1.00 24.00  4.00 25.00 29.00
[409] 18.00 23.00 31.00 16.00 44.00 14.00 25.00  0.42 16.00 25.00  7.00  9.00
[421] 29.00 18.00 63.00 22.00 38.00 47.00 15.00

10.3 Particular Columns (Variables)

To subset particular columns/variables, use the following syntax:

10.3.1 Base R

subsetVars <- c("survived","age","prediction")

mydata[,c(1,2,3)]
mydata[,c("survived","age","prediction")]
mydata[,subsetVars]

Or, to drop columns:

dropVars <- c("sibsp","parch")

mydata[,-c(5,6)]
mydata[,names(mydata) %ni% c("sibsp","parch")]
mydata[,names(mydata) %ni% dropVars]

10.3.2 Tidyverse

mydata %>%
  select(survived, age, prediction)
mydata %>%
  select(survived:prediction)
mydata %>%
  select(all_of(subsetVars))

Or, to drop columns:

mydata %>%
  select(-sibsp, -parch)
mydata %>%
  select(-c(sibsp:parch))
mydata %>%
  select(-all_of(dropVars))

10.4 Particular Rows

To subset particular rows, use the following syntax:

10.4.1 Base R

subsetRows <- c(1,3,5)

mydata[c(1,3,5),]
mydata[subsetRows,]
mydata[which(mydata$survived == 1),]

10.4.2 Tidyverse

mydata %>%
  filter(survived == 1)
mydata %>%
  filter(survived == 1, parch <= 1)
mydata %>%
  filter(survived == 1 | parch <= 1)

10.5 Particular Rows and Columns

To subset particular rows and columns, use the following syntax:

10.5.1 Base R

mydata[c(1,3,5), c(1,2,3)]
mydata[subsetRows, subsetVars]
mydata[which(mydata$survived == 1), subsetVars]

10.5.2 Tidyverse

mydata %>%
  filter(survived == 1) %>%
  select(all_of(subsetVars))

11 View Data

11.1 All Data

To view data, use the following syntax:

View(mydata)

11.2 First 6 Rows/Elements

To view only the first six rows (if a data frame) or elements (if a vector), use the following syntax:

head(mydata)
head(mydata$age)
[1] 29.00  0.92  2.00 30.00 25.00 48.00

12 Data Characteristics

12.1 Data Structure

str(mydata)
'data.frame':   1046 obs. of  7 variables:
 $ survived  : int  1 1 0 0 0 1 1 0 1 0 ...
 $ pclass    : int  1 1 1 1 1 1 1 1 1 1 ...
 $ sex       : chr  "female" "male" "female" "male" ...
 $ age       : num  29 0.92 2 30 25 48 63 39 53 71 ...
 $ sibsp     : int  0 1 1 1 1 0 1 0 2 0 ...
 $ parch     : int  0 2 2 2 2 0 0 0 0 0 ...
 $ prediction: num  0.945 0.784 0.979 0.516 0.946 ...

12.2 Data Dimensions

Number of rows and columns:

dim(mydata)
[1] 1046    7

12.3 Number of Elements

length(mydata$age)
[1] 1046

12.4 Number of Missing Elements

length(mydata$age[which(is.na(mydata$age))])
[1] 0

12.5 Number of Non-Missing Elements

length(mydata$age[which(!is.na(mydata$age))])
[1] 1046
length(na.omit(mydata$age))
[1] 1046

13 Create New Variables

To create a new variable, use the following syntax:

mydata$newVar <- NA

Here is an example of creating a new variable:

mydata$ID <- 1:nrow(mydata)

14 Create a Data Frame

Here is an example of creating a data frame:

mydata2 <- data.frame(
  ID = c(1:5, 1047:1051),
  cat = sample(0:1, 10, replace = TRUE)
)

mydata2

15 Recode Variables

Here is an example of recoding a variable:

mydata$oldVar1[which(mydata$sex == "male")] <- 0
mydata$oldVar1[which(mydata$sex == "female")] <- 1

mydata$oldVar2[which(mydata$sex == "male")] <- 1
mydata$oldVar2[which(mydata$sex == "female")] <- 0

Recode multiple variables:

mydata %>%
  mutate(across(c(
    survived:pclass),
    ~ case_match(
      .,
      0 ~ "No",
      1 ~ "Yes")))
mydata %>%
  mutate(across(c(
    survived:pclass),
    ~ case_match(
      .,
      c(0,1) ~ 1,
      c(2,3) ~ 2)))

16 Rename Variables

mydata <- mydata %>% 
  rename(
    newVar1 = oldVar1,
    newVar2 = oldVar2)

Using a vector of variable names:

varNamesFrom <- c("oldVar1","oldVar2")
varNamesTo <- c("newVar1","newVar2")

mydata <- mydata %>% 
  rename_with(~ varNamesTo, all_of(varNamesFrom))

17 Convert the Types of Variables

One variable:

mydata$factorVar <- factor(mydata$sex)
mydata$numericVar <- as.numeric(mydata$prediction)
mydata$integerVar <- as.integer(mydata$parch)
mydata$characterVar <- as.character(mydata$sex)

Multiple variables:

mydata %>%
  mutate(across(c(
    age,
    parch,
    prediction),
    as.numeric))
mydata %>%
  mutate(across(
    age:parch,
    as.numeric))
mydata %>%
  mutate(across(where(is.factor), as.character))

18 Merging/Joins

18.1 Overview

Merging (also called joining) merges two data objects using a shared set of variables called “keys.” The keys are the variable(s) that uniquely identify each row (i.e., they account for the levels of nesting). In some data objects, the key might be the participant’s ID (e.g., participantID). However, some data objects have multiple keys. For instance, in long form data objects, each participant may have multiple rows corresponding to multiple timepoints. In this case, the keys are participantID and timepoint. If a participant has multiple rows corresponding to timepoints and measures, the keys are participantID, timepoint, and measure. In general, each row should have a value on each of the keys; there should be no missingness in the keys.

To merge two objects, the keys must be present in both objects. The keys are used to merge the variables in object 1 (x) with the variables in object 2 (y). Different merge types select different rows to merge.

Note: if the two objects include variables with the same name (apart from the keys), R will not know how you want each to appear in the merged object. So, it will add a suffix (e.g., .x, .y) to each common variable to indicate which object (i.e., object x or object y) the variable came from, where object x is the first object—i.e., the object to which object y (the second object) is merged. In general, apart from the keys, you should not include variables with the same name in two objects to be merged. To prevent this, either remove or rename the shared variable in one of the objects, or include the shared variable as a key. However, as described above, you should include it as a key only if it uniquely identifies each row in terms of levels of nesting.

18.2 Data Before Merging

Here are the data in the mydata object:

mydata
dim(mydata)
[1] 1046   14

Here are the data in the mydata2 object:

mydata2
dim(mydata2)
[1] 10  2

18.3 Types of Joins

18.3.1 Visual Overview of Join Types

Below is a visual that depicts various types of merges/joins. Object x is the circle labeled as A. Object y is the circle labeled as B. The area of overlap in the Venn diagram indicates the rows on the keys that are shared between the two objects (e.g., participantID values 1, 2, and 3). The non-overlapping area indicates the rows on the keys that are unique to each object (e.g., participantID values 4, 5, and 6 in Object x and values 7, 8, and 9 in Object y). The shaded yellow area indicates which rows (on the keys) are kept in the merged object from each of the two objects, when using each of the merge types. For instance, a left outer join keeps the shared rows and the rows that are unique to object x, but it drops the rows that are unique to object y.

Types of merges/joins
Types of merges/joins

Image source: Predictive Hacks (archived at: https://perma.cc/WV7U-BS68)

18.3.2 Full Outer Join

A full outer join includes all rows in \(x\) or \(y\). It returns columns from \(x\) and \(y\). Here is how to merge two data frames using a full outer join (i.e., “full join”):

fullJoinData <- merge(mydata, mydata2, by = "ID", all = TRUE)

fullJoinData
dim(fullJoinData)
[1] 1051   15

Or, alternatively, using tidyverse:

full_join(mydata, mydata2, by = "ID")

18.3.3 Left Outer Join

A left outer join includes all rows in \(x\). It returns columns from \(x\) and \(y\). Here is how to merge two data frames using a left outer join (“left join”):

leftJoinData <- merge(mydata, mydata2, by = "ID", all.x = TRUE)

leftJoinData
dim(leftJoinData)
[1] 1046   15

Or, alternatively, using tidyverse:

left_join(mydata, mydata2, by = "ID")

18.3.4 Right Outer Join

A right outer join includes all rows in \(y\). It returns columns from \(x\) and \(y\). Here is how to merge two data frames using a right outer join (“right join”):

rightJoinData <- merge(mydata, mydata2, by = "ID", all.y = TRUE)

rightJoinData
dim(rightJoinData)
[1] 10 15

Or, alternatively, using tidyverse:

right_join(mydata, mydata2, by = "ID")

18.3.5 Inner Join

An inner join includes all rows that are in both \(x\) and \(y\). An inner join will return one row of \(x\) for each matching row of \(y\), and can duplicate values of records on either side (left or right) if \(x\) and \(y\) have more than one matching record. It returns columns from \(x\) and \(y\). Here is how to merge two data frames using an inner join:

innerJoinData <- merge(mydata, mydata2, by = "ID", all.x = FALSE, all.y = FALSE)

innerJoinData
dim(innerJoinData)
[1]  5 15

Or, alternatively, using tidyverse:

inner_join(mydata, mydata2, by = "ID")

18.3.6 Semi Join

A semi join is a filter. A left semi join returns all rows from \(x\) with a match in \(y\). That is, it filters out records from \(x\) that are not in \(y\). Unlike an inner join, a left semi join will never duplicate rows of \(x\), and it includes columns from only \(x\) (not from \(y\)). Here is how to merge two data frames using a left semi join:

semiJoinData <- semi_join(mydata, mydata2, by = "ID")

semiJoinData
dim(semiJoinData)
[1]  5 14

18.3.7 Anti Join

An anti join is a filter. A left anti join returns all rows from \(x\) without a match in \(y\). That is, it filters out records from \(x\) that are in \(y\). It returns columns from only \(x\) (not from \(y\)). Here is how to merge two data frames using a left anti join:

antiJoinData <- anti_join(mydata, mydata2, by = "ID")

antiJoinData
dim(antiJoinData)
[1] 1041   14

18.3.8 Cross Join

A cross join combines each row in \(x\) with each row in \(y\).

crossJoinData <- cross_join(
  data.frame(rater = c("Mother","Father","Teacher")),
  data.frame(timepoint = 1:3))

crossJoinData
dim(crossJoinData)
[1] 9 2

19 Long to Wide

Original data:

fish_encounters

Data widened by a variable (station), using tidyverse:

fish_encounters %>% 
  pivot_wider(
    names_from = station,
    values_from = seen)

20 Wide to Long

Original data:

mtcars

Data in long form, transformed from wide form using tidyverse:

mtcars %>% 
  pivot_longer(
    cols = everything(),
    names_to = "variable",
    values_to = "value")

21 Average Ratings Across Coders

Create data with multiple coders:

idWaveCoder <- 
  expand.grid(
    id = 1:100,
    wave = 1:3,
    coder = 1:3,
    positiveAffect = NA,
    negativeAffect = NA
  )

idWaveCoder$positiveAffect <- rnorm(nrow(idWaveCoder))
idWaveCoder$negativeAffect <- rnorm(nrow(idWaveCoder))

idWaveCoder %>% 
  arrange(id, wave, coder)

Average data across coders:

idWave <- idWaveCoder %>% 
  group_by(id, wave) %>% 
  summarise(
    across(everything(),
      ~ mean(.x, na.rm = TRUE)),
    .groups = "drop") %>% 
  select(-coder)

idWave

22 Loops

If you want to perform the same computation multiple times, it can be faster to do it in a loop compared to writing out the same computation many times. For instance, here is a loop that prints each element of a vector and the loop index (i) that indicates where the loop is in terms of its iterations:

fruits <- c("apple", "banana", "cherry")

for(i in 1:length(fruits)){
  print(paste("The loop is at index:", i, sep = " "))
  print(fruits[i])
}
[1] "The loop is at index: 1"
[1] "apple"
[1] "The loop is at index: 2"
[1] "banana"
[1] "The loop is at index: 3"
[1] "cherry"

23 Session Info

sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=C.UTF-8       LC_NUMERIC=C           LC_TIME=C.UTF-8       
 [4] LC_COLLATE=C.UTF-8     LC_MONETARY=C.UTF-8    LC_MESSAGES=C.UTF-8   
 [7] LC_PAPER=C.UTF-8       LC_NAME=C              LC_ADDRESS=C          
[10] LC_TELEPHONE=C         LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C   

time zone: UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] psych_2.4.6.26    lubridate_1.9.3   forcats_1.0.0     stringr_1.5.1    
 [5] dplyr_1.1.4       purrr_1.0.2       readr_2.1.5       tidyr_1.3.1      
 [9] tibble_3.2.1      ggplot2_3.5.1     tidyverse_2.0.0   petersenlab_1.1.0

loaded via a namespace (and not attached):
 [1] gtable_0.3.6       xfun_0.49          bslib_0.8.0        htmlwidgets_1.6.4 
 [5] lattice_0.22-6     tzdb_0.4.0         quadprog_1.5-8     vctrs_0.6.5       
 [9] tools_4.4.2        generics_0.1.3     stats4_4.4.2       parallel_4.4.2    
[13] fansi_1.0.6        cluster_2.1.6      pkgconfig_2.0.3    data.table_1.16.2 
[17] checkmate_2.3.2    RColorBrewer_1.1-3 lifecycle_1.0.4    compiler_4.4.2    
[21] munsell_0.5.1      mnormt_2.1.1       mitools_2.4        htmltools_0.5.8.1 
[25] sass_0.4.9         yaml_2.3.10        htmlTable_2.4.3    Formula_1.2-5     
[29] pillar_1.9.0       jquerylib_0.1.4    cachem_1.1.0       Hmisc_5.2-0       
[33] rpart_4.1.23       nlme_3.1-166       lavaan_0.6-19      tidyselect_1.2.1  
[37] digest_0.6.37      mvtnorm_1.3-2      stringi_1.8.4      reshape2_1.4.4    
[41] fastmap_1.2.0      grid_4.4.2         colorspace_2.1-1   cli_3.6.3         
[45] magrittr_2.0.3     base64enc_0.1-3    utf8_1.2.4         pbivnorm_0.6.0    
[49] withr_3.0.2        foreign_0.8-87     scales_1.3.0       backports_1.5.0   
[53] timechange_0.3.0   rmarkdown_2.29     nnet_7.3-19        gridExtra_2.3     
[57] hms_1.1.3          evaluate_1.0.1     knitr_1.49         mix_1.0-12        
[61] viridisLite_0.4.2  rlang_1.1.4        Rcpp_1.0.13-1      xtable_1.8-4      
[65] glue_1.8.0         DBI_1.2.3          rstudioapi_0.17.1  jsonlite_1.8.9    
[69] R6_2.5.1           plyr_1.8.9        
LS0tCnRpdGxlOiAiRGF0YSBNYW5hZ2VtZW50IgotLS0KCmBgYHtyIHNldHVwLCBpbmNsdWRlID0gRkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldCgKICBlY2hvID0gVFJVRSwKICBlcnJvciA9IFRSVUUsCiAgY29tbWVudCA9ICIiLAogIGNsYXNzLnNvdXJjZSA9ICJmb2xkLXNob3ciKQpgYGAKCiMgSW1wb3J0IERhdGEgeyNpbXBvcnREYXRhfQoKSW1wb3J0aW5nIGRhdGEgdGFrZXMgc3ludGF4IG9mIHRoZSBmb2xsb3dpbmcgZm9ybSBmb3IgYC5jc3ZgIGZpbGVzOgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KZGF0YSA8LSByZWFkLmNzdigiZmlsZXBhdGgvZmlsZW5hbWUuY3N2IikKYGBgCgpOb3RlOiBpdCBpcyBpbXBvcnRhbnQgdG8gdXNlIGZvcndhcmQgc2xhc2hlcyAoIi8iKSByYXRoZXIgdGhhbiBiYWNrc2xhc2hlcyAoIlxcIikgd2hlbiBzcGVjaWZ5aW5nIGZpbGVwYXRocyBpbiBgUmAuCgpCZWxvdywgSSBpbXBvcnQgYSBgLmNzdmAgZmlsZSBhbmQgc2F2ZSBpdCBpbnRvIGFuIG9iamVjdCBjYWxsZWQgYG15ZGF0YWAgKHlvdSBjb3VsZCBjYWxsIHRoaXMgb2JqZWN0IHdoYXRldmVyIHlvdSB3YW50KToKCmBgYHtyLCBldmFsID0gRkFMU0V9Cm15ZGF0YSA8LSByZWFkLmNzdigiaHR0cHM6Ly9vc2YuaW8vczZ3cm0vZG93bmxvYWQiKQpgYGAKCmBgYHtyLCBpbmNsdWRlID0gRkFMU0V9Cm15ZGF0YSA8LSByZWFkLmNzdigiLi9kYXRhL3RpdGFuaWMuY3N2IikgI2h0dHBzOi8vb3NmLmlvL3M2d3JtL2Rvd25sb2FkCmBgYAoKSW1wb3J0aW5nIGRhdGEgdGFrZXMgc3ludGF4IG9mIHRoZSBmb2xsb3dpbmcgZm9ybSBmb3IgYC5SRGF0YWAgZmlsZXM6CgpgYGB7ciwgZXZhbCA9IEZBTFNFfQpsb2FkKCJmaWxlcGF0aC9maWxlbmFtZS5SRGF0YSIpCmBgYAoKIyMgSW1wb3J0IE11bHRpcGxlIERhdGEgRmlsZXMgeyNpbXBvcnRNdWx0aXBsZURhdGFGaWxlc30KCmBgYHtyLCBldmFsID0gRkFMU0V9CmRhdGFOYW1lcyA8LSBwYXN0ZSgiZGF0YSIsIDE6MTAwLCBzZXAgPSAiIikKZGF0YUZpbGVuYW1lcyA8LSBwYXN0ZShkYXRhTmFtZXMsICIuY3N2Iiwgc2VwID0gIiIpCmRhdGFGaWxlcGF0aHMgPC0gcGFzdGUoIkM6L3VzZXJzL3VzZXJuYW1lLyIsIGRhdGFGaWxlbmFtZXMsIHNlcCA9ICIiKQoKZGF0YV9saXN0IDwtIGxhcHBseShkYXRhRmlsZXBhdGhzLCByZWFkLmNzdikgIyBsYXBwbHkoZGF0YUZpbGVwYXRocywgZGF0YS50YWJsZTo6ZnJlYWQpIGlzIGV2ZW4gZmFzdGVyCm5hbWVzKGRhdGFfbGlzdCkgPC0gYmFzZW5hbWUoZGF0YUZpbGVwYXRocykKYGBgCgpBbHRlcm5hdGl2ZWx5LCBpZiB5b3Ugd2FudCB0byBsb2FkIGFsbCBgLmNzdmAgZmlsZXMgaW4gYSBkaXJlY3RvcnksIHlvdSBjYW4gaWRlbnRpZnkgdGhlIGZpbGVuYW1lcyBwcm9ncmFtbWF0aWNhbGx5OgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KZGF0YUZpbGVuYW1lcyA8LSBsaXN0LmZpbGVzKAogIHBhdGggPSAiQzovdXNlcnMvdXNlcm5hbWUvIiwKICBwYXR0ZXJuID0gIlxcLmNzdiQiKQoKZGF0YUZpbGVwYXRocyA8LSBsaXN0LmZpbGVzKAogIHBhdGggPSAiQzovdXNlcnMvdXNlcm5hbWUvIiwKICBwYXR0ZXJuID0gIlxcLmNzdiQiLAogIGZ1bGwubmFtZXMgPSBUUlVFKQoKZGF0YV9saXN0IDwtIGxhcHBseShkYXRhRmlsZXBhdGhzLCByZWFkLmNzdikgIyBsYXBwbHkoZGF0YUZpbGVwYXRocywgZGF0YS50YWJsZTo6ZnJlYWQpIGlzIGV2ZW4gZmFzdGVyCm5hbWVzKGRhdGFfbGlzdCkgPC0gYmFzZW5hbWUoZGF0YUZpbGVwYXRocykKYGBgCgojIFNhdmUgRGF0YSB7I3NhdmVEYXRhfQoKU2F2aW5nIGRhdGEgdGFrZXMgc3ludGF4IG9mIHRoZSBmb2xsb3dpbmcgZm9ybSBmb3IgYC5jc3ZgIGZpbGVzOgoKYGBge3IsIGV2YWwgPSBGQUxTRX0Kd3JpdGUuY3N2KG9iamVjdCwgZmlsZSA9ICJmaWxlcGF0aC9maWxlbmFtZS5jc3YiKQpgYGAKCkZvciBleGFtcGxlOgoKYGBge3IsIGV2YWwgPSBGQUxTRX0Kd3JpdGUuY3N2KG15ZGF0YSwgZmlsZSA9ICJteWRhdGEuY3N2IikKYGBgCgpTYXZpbmcgZGF0YSB0YWtlcyBzeW50YXggb2YgdGhlIGZvbGxvd2luZyBmb3JtIGZvciBgLlJEYXRhYCBmaWxlczoKCmBgYHtyLCBldmFsID0gRkFMU0V9CnNhdmUob2JqZWN0LCBmaWxlID0gImZpbGVwYXRoL2ZpbGVuYW1lLlJEYXRhIikKYGBgCgojIFVzZSBMYWIgRnVuY3Rpb25zIHsjbGFiRnVuY3Rpb25zfQoKVG8gdXNlIGxhYiBmdW5jdGlvbnMsIGZpcnN0IGluc3RhbGwgdGhlIFtgcGV0ZXJzZW5sYWJgIHBhY2thZ2VdKGh0dHBzOi8vZGV2cHN5bGFiLmdpdGh1Yi5pby9wZXRlcnNlbmxhYikuClRoZSBbYHBldGVyc2VubGFiYCBwYWNrYWdlXShodHRwczovL2RldnBzeWxhYi5naXRodWIuaW8vcGV0ZXJzZW5sYWIpIGlzIGhlcmU6IGh0dHBzOi8vZGV2cHN5bGFiLmdpdGh1Yi5pby9wZXRlcnNlbmxhYi4KWW91IGNhbiBpbnN0YWxsIGl0IHVzaW5nIHRoZSBmb2xsb3dpbmcgY29tbWFuZHM6CgpgYGB7ciwgZXZhbCA9IEZBTFNFfQppbnN0YWxsLnBhY2thZ2VzKCJyZW1vdGVzIikKcmVtb3Rlczo6aW5zdGFsbF9naXRodWIoIkRldlBzeUxhYi9wZXRlcnNlbmxhYiIpCmBgYAoKT25jZSB5b3UgaGF2ZSB0aGUgW2BwZXRlcnNlbmxhYmAgcGFja2FnZV0oaHR0cHM6Ly9kZXZwc3lsYWIuZ2l0aHViLmlvL3BldGVyc2VubGFiKSBpbnN0YWxsZWQsIGxvYWQgdGhlIHBhY2thZ2U6CgpgYGB7cn0KbGlicmFyeSgicGV0ZXJzZW5sYWIiKQpgYGAKClRvIHJ1biBzY3JpcHRzIG9uIHRoZSBsYWIgZHJpdmUsIHNldCB0aGUgcGF0aCB0byB0aGUgbGFiIGRyaXZlIChgLy9sYy1ycy1zdG9yZTI0LmhwYy51aW93YS5lZHUvbHNzX2l0cGV0ZXJzZW4vTGFiL2ApIHVzaW5nIHRoZSBmb2xsb3dpbmcgY29kZToKCmBgYHtyLCBldmFsID0gRkFMU0V9CnBldGVyc2VuTGFiUGF0aCA8LSBzZXRMYWJQYXRoKCkKYGBgCgojIExvYWQvSW5zdGFsbCBQYWNrYWdlcyB7I2xvYWRJbnN0YWxsUGFja2FnZXN9CgpUbyBpbnN0YWxsIGEgc2luZ2xlIHBhY2thZ2UgdGhhdCBpcyBvbiB0aGUgQ1JBTiByZXBvc2l0b3J5LCB1c2UgdGhlIGZvbGxvd2luZyBzeW50YXg6CgpgYGB7ciwgZXZhbCA9IEZBTFNFfQppbnN0YWxsLnBhY2thZ2VzKCJuYW1lX29mX3BhY2thZ2UiKQpgYGAKClRvIGluc3RhbGwgbXVsdGlwbGUgcGFja2FnZXMgdGhhdCBhcmUgb24gdGhlIENSQU4gcmVwb3NpdG9yeSwgdXNlIHRoZSBmb2xsb3dpbmcgc3ludGF4OgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KaW5zdGFsbC5wYWNrYWdlcyhjKCJuYW1lX29mX3BhY2thZ2UxIiwibmFtZV9vZl9wYWNrYWdlMiIsIm5hbWVfb2ZfcGFja2FnZTMiKSkKYGBgCgpUbyBpbnN0YWxsIGEgcGFja2FnZSB0aGF0IGlzIG9uIGEgYEdpdEh1YmAgcmVwb3NpdG9yeSwgdXNlIHRoZSBmb2xsb3dpbmcgc3ludGF4OgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KaW5zdGFsbC5wYWNrYWdlcygicmVtb3RlcyIpCnJlbW90ZXM6Omluc3RhbGxfZ2l0aHViKCJ1c2VybmFtZV9vZl9HaXRIdWJfYXV0aG9yL25hbWVfb2ZfcGFja2FnZSIpCmBgYAoKRm9yIGluc3RhbmNlOgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KcmVtb3Rlczo6aW5zdGFsbF9naXRodWIoIkRldlBzeUxhYi9wZXRlcnNlbmxhYiIpCmBgYAoKVGhlIGRlZmF1bHQgd2F5IHRvIGxvYWQgYSBwYWNrYWdlIGluIGBSYCBpczoKCmBgYHtyLCBldmFsID0gRkFMU0V9CmxpYnJhcnkoInBhY2thZ2VOYW1lMSIpCmxpYnJhcnkoInBhY2thZ2VOYW1lMiIpCmxpYnJhcnkoInBhY2thZ2VOYW1lMyIpCmBgYAoKSG93ZXZlciwgd2hlbiBzb3VyY2luZyAoaS5lLiwgcnVubmluZykgb3RoZXIgYFJgIHNjcmlwdHMsIGl0IGlzIHBvc3NpYmxlIHRoYXQgeW91IHdpbGwgcnVuIHNjcmlwdHMgdGhhdCB1c2UgcGFja2FnZXMgdGhhdCB5b3UgZG8gbm90IGhhdmUgaW5zdGFsbGVkLCByZXN1bHRpbmcgaW4gYW4gZXJyb3IgdGhhdCBwcmV2ZW50cyB0aGUgc2NyaXB0IGZyb20gcnVubmluZy4KVGh1cywgaXQgY2FuIGJlIHNhZmVyIHRvIGxvYWQgcGFja2FnZXMgdXNpbmcgdGhlIGxhYiBmdW5jdGlvbiwgYGxvYWRfb3JfaW5zdGFsbCgpLGAgcmF0aGVyIHRoYW4gdXNpbmcgYGxpYnJhcnkoKWAuClRoZSBgbG9hZF9vcl9pbnN0YWxsKClgIGZ1bmN0aW9uIGNoZWNrcyB3aGV0aGVyIGEgcGFja2FnZSBpcyBpbnN0YWxsZWQuCklmIHRoZSBwYWNrYWdlIGlzIG5vdCBpbnN0YWxsZWQsIHRoZSBmdW5jdGlvbiBpbnN0YWxscyBhbmQgbG9hZHMgdGhlIHBhY2thZ2UuCklmIHRoZSBwYWNrYWdlIGlzIGluc3RhbGxlZCwgdGhlIGZ1bmN0aW9uIGxvYWRzIHRoZSBwYWNrYWdlLgpUbyB1c2UgdGhpcyBmdW5jdGlvbiwgeW91IG11c3QgaGF2ZSB0aGUgW2BwZXRlcnNlbmxhYmAgcGFja2FnZV0oaHR0cHM6Ly9kZXZwc3lsYWIuZ2l0aHViLmlvL3BldGVyc2VubGFiKSBsb2FkZWQuCgpgYGB7ciwgZXZhbCA9IEZBTFNFfQpsaWJyYXJ5KCJwZXRlcnNlbmxhYiIpCmxvYWRfb3JfaW5zdGFsbChjKCJwYWNrYWdlTmFtZTEiLCJwYWNrYWdlTmFtZTIiLCJwYWNrYWdlTmFtZTMiKSkKYGBgCgpGb3IgZXhhbXBsZToKCmBgYHtyfQpsaWJyYXJ5KCJwZXRlcnNlbmxhYiIpCmxvYWRfb3JfaW5zdGFsbChjKCJ0aWR5dmVyc2UiLCJwc3ljaCIpKQpgYGAKCiMgU2V0IGEgU2VlZCB7I3NlZWR9CgpTZXQgYSBzZWVkIChhbnkgbnVtYmVyKSB0byByZXByb2R1Y2UgdGhlIHJlc3VsdHMgb2YgYW5hbHlzZXMgdGhhdCBpbnZvbHZlIHJhbmRvbSBudW1iZXIgZ2VuZXJhdGlvbi4KCmBgYHtyfQpzZXQuc2VlZCg1MjI0MikKYGBgCgojIFJ1biBhbiBgUmAgU2NyaXB0IHsjc291cmNlfQoKVG8gcnVuIGFuIGBSYCBzY3JpcHQsIHVzZSB0aGUgZm9sbG93aW5nIHN5bnRheDoKCmBgYHtyLCBldmFsID0gRkFMU0V9CnNvdXJjZSgiZmlsZXBhdGgvZmlsZW5hbWUuUiIpCmBgYAoKIyBSZW5kZXIgYW4gYFJgIE1hcmtkb3duIChgLlJtZGApIEZpbGUgeyNyZW5kZXJSbWR9CgpUbyByZW5kZXIgYSBgLlJtZGAgZmlsZSwgdXNlIHRoZSBmb2xsb3dpbmcgc3ludGF4OgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KcmVuZGVyKCJmaWxlcGF0aC9maWxlbmFtZS5SbWQiKQpgYGAKCiMgVmFyaWFibGUgTmFtZXMgeyN2YXJOYW1lc30KClRvIGxvb2sgYXQgdGhlIG5hbWVzIG9mIHZhcmlhYmxlcyBpbiBhIGRhdGEgZnJhbWUsIHVzZSB0aGUgZm9sbG93aW5nIHN5bnRheDoKCmBgYHtyfQpuYW1lcyhteWRhdGEpCmBgYAoKIyBMb2dpY2FsIE9wZXJhdG9ycyB7I2xvZ2ljYWxPcGVyYXRvcnN9CgpMb2dpY2FsIG9wZXJhdG9ycyBldmFsdWF0ZSBhIGNvbmRpdGlvbiBmb3IgZWFjaCB2YWx1ZSBhbmQgeWllbGQgdmFsdWVzIG9mIGBUUlVFYCBhbmQgYEZBTFNFYCwgY29ycmVzcG9uZGluZyB0byB3aGV0aGVyIHRoZSBldmFsdWF0aW9uIGZvciBhIGdpdmVuIHZhbHVlIG1ldCB0aGUgY29uZGl0aW9uLgoKIyMgSXMgRXF1YWwgVG86IGA9PWAKCmBgYHtyfQpteWRhdGEkc3Vydml2ZWQgPT0gMQpgYGAKCiMjIElzIE5vdCBFcXVhbCBUbzogYCE9YAoKYGBge3J9Cm15ZGF0YSRzdXJ2aXZlZCAhPSAxCmBgYAoKIyMjIEdyZWF0ZXIgVGhhbjogYD5gCgpgYGB7cn0KbXlkYXRhJHBhcmNoID4gMQpgYGAKCiMjIExlc3MgVGhhbjogYDxgCgpgYGB7cn0KbXlkYXRhJHBhcmNoIDwgMQpgYGAKCiMjIEdyZWF0ZXIgVGhhbiBvciBFcXVhbCBUbzogYD49YAoKYGBge3J9Cm15ZGF0YSRwYXJjaCA+PSAxCmBgYAoKIyMgTGVzcyBUaGFuIG9yIEVxdWFsIFRvOiBgPD1gCgpgYGB7cn0KbXlkYXRhJHBhcmNoIDw9IDEKYGBgCiMjIElzIGluIGEgVmFsdWUgb2YgQW5vdGhlciBWZWN0b3I6IGAlaW4lYAoKYGBge3J9CmFub3RoZXJWZWN0b3IgPC0gYygwLDEpCm15ZGF0YSRwYXJjaCAlaW4lIGFub3RoZXJWZWN0b3IKYGBgCgojIyBJcyBOb3QgaW4gYSBWYWx1ZSBvZiBBbm90aGVyIFZlY3RvcjogYCVuaSVgCgpOb3RlOiB0aGlzIGZ1bmN0aW9uIGlzIHBhcnQgb2YgdGhlIFtgcGV0ZXJzZW5sYWJgXShodHRwczovL2dpdGh1Yi5jb20vRGV2UHN5TGFiL3BldGVyc2VubGFiKSBwYWNrYWdlIGFuZCBpcyBub3QgYXZhaWxhYmxlIGluIGJhc2UgYFJgLgoKYGBge3J9Cm15ZGF0YSRwYXJjaCAlbmklIGFub3RoZXJWZWN0b3IKYGBgCgojIyBJcyBNaXNzaW5nOiBgaXMubmEoKWAKCmBgYHtyfQppcy5uYShteWRhdGEkcHJlZGljdGlvbikKYGBgCgojIyBJcyBOb3QgTWlzc2luZzogYCFpcy5uYSgpYAoKYGBge3J9CiFpcy5uYShteWRhdGEkcHJlZGljdGlvbikKYGBgCgojIyBBbmQ6IGAmYAoKYGBge3J9CiFpcy5uYShteWRhdGEkcHJlZGljdGlvbikgJiBteWRhdGEkcGFyY2ggPj0gMQpgYGAKCiMjIE9yOiBgfGAKCmBgYHtyfQppcy5uYShteWRhdGEkcHJlZGljdGlvbikgfCBteWRhdGEkcGFyY2ggPj0gMQpgYGAKCiMgU3Vic2V0IHsjc3Vic2V0fQoKVG8gc3Vic2V0IGEgZGF0YSBmcmFtZSwgdXNlIGJyYWNrZXRzIHRvIHNwZWNpZnkgdGhlIHN1YnNldCBvZiByb3dzIGFuZCBjb2x1bW5zIHRvIGtlZXAsIHdoZXJlIHRoZSB2YWx1ZS92ZWN0b3IgYmVmb3JlIHRoZSBjb21tYSBzcGVjaWZpZXMgdGhlIHJvd3MgdG8ga2VlcCwgYW5kIHRoZSB2YWx1ZS92ZWN0b3IgYWZ0ZXIgdGhlIGNvbW1hIHNwZWNpZmllcyB0aGUgY29sdW1ucyB0byBrZWVwOgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KZGF0YWZyYW1lW3Jvd3NUb0tlZXAsIGNvbHVtbnNUb0tlZXBdCmBgYAoKWW91IGNhbiBzdWJzZXQgYnkgdXNpbmcgYW55IG9mIHRoZSBmb2xsb3dpbmc6CgotIG51bWVyaWMgaW5kaWNlcyBvZiB0aGUgcm93cy9jb2x1bW5zIHRvIGtlZXAgKG9yIGRyb3ApCi0gbmFtZXMgb2YgdGhlIHJvd3MvY29sdW1ucyB0byBrZWVwIChvciBkcm9wKQotIHZhbHVlcyBvZiBgVFJVRWAgYW5kIGBGQUxTRWAgY29ycmVzcG9uZGluZyB0byB3aGljaCByb3dzL2NvbHVtbnMgdG8ga2VlcAoKIyMgT25lIFZhcmlhYmxlCgpUbyBzdWJzZXQgb25lIHZhcmlhYmxlLCB1c2UgdGhlIGZvbGxvd2luZyBzeW50YXg6CgpgYGB7cn0KbXlkYXRhJGFnZQpgYGAKCm9yOgoKYGBge3J9Cm15ZGF0YVssImFnZSJdCmBgYAoKIyMgUGFydGljdWxhciBSb3dzIG9mIE9uZSBWYXJpYWJsZQoKVG8gc3Vic2V0IG9uZSB2YXJpYWJsZSwgdXNlIHRoZSBmb2xsb3dpbmcgc3ludGF4OgoKYGBge3J9Cm15ZGF0YSRhZ2Vbd2hpY2gobXlkYXRhJHN1cnZpdmVkID09IDEpXQpgYGAKCm9yOgoKYGBge3J9Cm15ZGF0YVt3aGljaChteWRhdGEkc3Vydml2ZWQgPT0gMSksICJhZ2UiXQpgYGAKCiMjIFBhcnRpY3VsYXIgQ29sdW1ucyAoVmFyaWFibGVzKQoKVG8gc3Vic2V0IHBhcnRpY3VsYXIgY29sdW1ucy92YXJpYWJsZXMsIHVzZSB0aGUgZm9sbG93aW5nIHN5bnRheDoKCiMjIyBCYXNlIGBSYAoKYGBge3J9CnN1YnNldFZhcnMgPC0gYygic3Vydml2ZWQiLCJhZ2UiLCJwcmVkaWN0aW9uIikKCm15ZGF0YVssYygxLDIsMyldCm15ZGF0YVssYygic3Vydml2ZWQiLCJhZ2UiLCJwcmVkaWN0aW9uIildCm15ZGF0YVssc3Vic2V0VmFyc10KYGBgCgpPciwgdG8gZHJvcCBjb2x1bW5zOgoKYGBge3J9CmRyb3BWYXJzIDwtIGMoInNpYnNwIiwicGFyY2giKQoKbXlkYXRhWywtYyg1LDYpXQpteWRhdGFbLG5hbWVzKG15ZGF0YSkgJW5pJSBjKCJzaWJzcCIsInBhcmNoIildCm15ZGF0YVssbmFtZXMobXlkYXRhKSAlbmklIGRyb3BWYXJzXQpgYGAKCiMjIyBUaWR5dmVyc2UKCmBgYHtyfQpteWRhdGEgJT4lCiAgc2VsZWN0KHN1cnZpdmVkLCBhZ2UsIHByZWRpY3Rpb24pCgpteWRhdGEgJT4lCiAgc2VsZWN0KHN1cnZpdmVkOnByZWRpY3Rpb24pCgpteWRhdGEgJT4lCiAgc2VsZWN0KGFsbF9vZihzdWJzZXRWYXJzKSkKYGBgCgpPciwgdG8gZHJvcCBjb2x1bW5zOgoKYGBge3J9Cm15ZGF0YSAlPiUKICBzZWxlY3QoLXNpYnNwLCAtcGFyY2gpCgpteWRhdGEgJT4lCiAgc2VsZWN0KC1jKHNpYnNwOnBhcmNoKSkKCm15ZGF0YSAlPiUKICBzZWxlY3QoLWFsbF9vZihkcm9wVmFycykpCmBgYAoKIyMgUGFydGljdWxhciBSb3dzCgpUbyBzdWJzZXQgcGFydGljdWxhciByb3dzLCB1c2UgdGhlIGZvbGxvd2luZyBzeW50YXg6CgojIyMgQmFzZSBgUmAKCmBgYHtyfQpzdWJzZXRSb3dzIDwtIGMoMSwzLDUpCgpteWRhdGFbYygxLDMsNSksXQpteWRhdGFbc3Vic2V0Um93cyxdCm15ZGF0YVt3aGljaChteWRhdGEkc3Vydml2ZWQgPT0gMSksXQpgYGAKCiMjIyBUaWR5dmVyc2UKCmBgYHtyfQpteWRhdGEgJT4lCiAgZmlsdGVyKHN1cnZpdmVkID09IDEpCgpteWRhdGEgJT4lCiAgZmlsdGVyKHN1cnZpdmVkID09IDEsIHBhcmNoIDw9IDEpCgpteWRhdGEgJT4lCiAgZmlsdGVyKHN1cnZpdmVkID09IDEgfCBwYXJjaCA8PSAxKQpgYGAKCiMjIFBhcnRpY3VsYXIgUm93cyBhbmQgQ29sdW1ucwoKVG8gc3Vic2V0IHBhcnRpY3VsYXIgcm93cyBhbmQgY29sdW1ucywgdXNlIHRoZSBmb2xsb3dpbmcgc3ludGF4OgoKIyMjIEJhc2UgYFJgCgpgYGB7cn0KbXlkYXRhW2MoMSwzLDUpLCBjKDEsMiwzKV0KbXlkYXRhW3N1YnNldFJvd3MsIHN1YnNldFZhcnNdCm15ZGF0YVt3aGljaChteWRhdGEkc3Vydml2ZWQgPT0gMSksIHN1YnNldFZhcnNdCmBgYAoKIyMjIFRpZHl2ZXJzZQoKYGBge3J9Cm15ZGF0YSAlPiUKICBmaWx0ZXIoc3Vydml2ZWQgPT0gMSkgJT4lCiAgc2VsZWN0KGFsbF9vZihzdWJzZXRWYXJzKSkKYGBgCgojIFZpZXcgRGF0YSB7I3ZpZXdEYXRhfQoKIyMgQWxsIERhdGEKClRvIHZpZXcgZGF0YSwgdXNlIHRoZSBmb2xsb3dpbmcgc3ludGF4OgoKYGBge3IsIGV2YWwgPSBGQUxTRX0KVmlldyhteWRhdGEpCmBgYAoKIyMgRmlyc3QgNiBSb3dzL0VsZW1lbnRzCgpUbyB2aWV3IG9ubHkgdGhlIGZpcnN0IHNpeCByb3dzIChpZiBhIGRhdGEgZnJhbWUpIG9yIGVsZW1lbnRzIChpZiBhIHZlY3RvciksIHVzZSB0aGUgZm9sbG93aW5nIHN5bnRheDoKCmBgYHtyfQpoZWFkKG15ZGF0YSkKaGVhZChteWRhdGEkYWdlKQpgYGAKCiMgRGF0YSBDaGFyYWN0ZXJpc3RpY3MgeyNkYXRhQ2hhcmFjdGVyaXN0aWNzfQoKIyMgRGF0YSBTdHJ1Y3R1cmUKCmBgYHtyfQpzdHIobXlkYXRhKQpgYGAKCiMjIERhdGEgRGltZW5zaW9ucwoKTnVtYmVyIG9mIHJvd3MgYW5kIGNvbHVtbnM6CgpgYGB7cn0KZGltKG15ZGF0YSkKYGBgCgojIyBOdW1iZXIgb2YgRWxlbWVudHMKCmBgYHtyfQpsZW5ndGgobXlkYXRhJGFnZSkKYGBgCgojIyBOdW1iZXIgb2YgTWlzc2luZyBFbGVtZW50cwoKYGBge3J9Cmxlbmd0aChteWRhdGEkYWdlW3doaWNoKGlzLm5hKG15ZGF0YSRhZ2UpKV0pCmBgYAoKIyMgTnVtYmVyIG9mIE5vbi1NaXNzaW5nIEVsZW1lbnRzCgpgYGB7cn0KbGVuZ3RoKG15ZGF0YSRhZ2Vbd2hpY2goIWlzLm5hKG15ZGF0YSRhZ2UpKV0pCmxlbmd0aChuYS5vbWl0KG15ZGF0YSRhZ2UpKQpgYGAKCiMgQ3JlYXRlIE5ldyBWYXJpYWJsZXMgeyNjcmVhdGVOZXdWYXJzfQoKVG8gY3JlYXRlIGEgbmV3IHZhcmlhYmxlLCB1c2UgdGhlIGZvbGxvd2luZyBzeW50YXg6CgpgYGB7cn0KbXlkYXRhJG5ld1ZhciA8LSBOQQpgYGAKCmBgYHtyLCBpbmNsdWRlID0gRkFMU0V9Cm15ZGF0YSRuZXdWYXIgPC0gTlVMTApgYGAKCkhlcmUgaXMgYW4gZXhhbXBsZSBvZiBjcmVhdGluZyBhIG5ldyB2YXJpYWJsZToKCmBgYHtyfQpteWRhdGEkSUQgPC0gMTpucm93KG15ZGF0YSkKYGBgCgojIENyZWF0ZSBhIERhdGEgRnJhbWUgeyNjcmVhdGVERn0KCkhlcmUgaXMgYW4gZXhhbXBsZSBvZiBjcmVhdGluZyBhIGRhdGEgZnJhbWU6CgpgYGB7cn0KbXlkYXRhMiA8LSBkYXRhLmZyYW1lKAogIElEID0gYygxOjUsIDEwNDc6MTA1MSksCiAgY2F0ID0gc2FtcGxlKDA6MSwgMTAsIHJlcGxhY2UgPSBUUlVFKQopCgpteWRhdGEyCmBgYAoKIyBSZWNvZGUgVmFyaWFibGVzIHsjcmVjb2RlVmFyc30KCkhlcmUgaXMgYW4gZXhhbXBsZSBvZiByZWNvZGluZyBhIHZhcmlhYmxlOgoKYGBge3J9Cm15ZGF0YSRvbGRWYXIxW3doaWNoKG15ZGF0YSRzZXggPT0gIm1hbGUiKV0gPC0gMApteWRhdGEkb2xkVmFyMVt3aGljaChteWRhdGEkc2V4ID09ICJmZW1hbGUiKV0gPC0gMQoKbXlkYXRhJG9sZFZhcjJbd2hpY2gobXlkYXRhJHNleCA9PSAibWFsZSIpXSA8LSAxCm15ZGF0YSRvbGRWYXIyW3doaWNoKG15ZGF0YSRzZXggPT0gImZlbWFsZSIpXSA8LSAwCmBgYAoKUmVjb2RlIG11bHRpcGxlIHZhcmlhYmxlczoKCmBgYHtyfQpteWRhdGEgJT4lCiAgbXV0YXRlKGFjcm9zcyhjKAogICAgc3Vydml2ZWQ6cGNsYXNzKSwKICAgIH4gY2FzZV9tYXRjaCgKICAgICAgLiwKICAgICAgMCB+ICJObyIsCiAgICAgIDEgfiAiWWVzIikpKQoKbXlkYXRhICU+JQogIG11dGF0ZShhY3Jvc3MoYygKICAgIHN1cnZpdmVkOnBjbGFzcyksCiAgICB+IGNhc2VfbWF0Y2goCiAgICAgIC4sCiAgICAgIGMoMCwxKSB+IDEsCiAgICAgIGMoMiwzKSB+IDIpKSkKYGBgCgojIFJlbmFtZSBWYXJpYWJsZXMgeyNyZW5hbWVWYXJzfQoKYGBge3J9Cm15ZGF0YSA8LSBteWRhdGEgJT4lIAogIHJlbmFtZSgKICAgIG5ld1ZhcjEgPSBvbGRWYXIxLAogICAgbmV3VmFyMiA9IG9sZFZhcjIpCmBgYAoKVXNpbmcgYSB2ZWN0b3Igb2YgdmFyaWFibGUgbmFtZXM6CgpgYGB7ciwgZXZhbCA9IEZBTFNFfQp2YXJOYW1lc0Zyb20gPC0gYygib2xkVmFyMSIsIm9sZFZhcjIiKQp2YXJOYW1lc1RvIDwtIGMoIm5ld1ZhcjEiLCJuZXdWYXIyIikKCm15ZGF0YSA8LSBteWRhdGEgJT4lIAogIHJlbmFtZV93aXRoKH4gdmFyTmFtZXNUbywgYWxsX29mKHZhck5hbWVzRnJvbSkpCmBgYAoKIyBDb252ZXJ0IHRoZSBUeXBlcyBvZiBWYXJpYWJsZXMgeyNjb252ZXJ0VmFyVHlwZXN9CgpPbmUgdmFyaWFibGU6CgpgYGB7cn0KbXlkYXRhJGZhY3RvclZhciA8LSBmYWN0b3IobXlkYXRhJHNleCkKbXlkYXRhJG51bWVyaWNWYXIgPC0gYXMubnVtZXJpYyhteWRhdGEkcHJlZGljdGlvbikKbXlkYXRhJGludGVnZXJWYXIgPC0gYXMuaW50ZWdlcihteWRhdGEkcGFyY2gpCm15ZGF0YSRjaGFyYWN0ZXJWYXIgPC0gYXMuY2hhcmFjdGVyKG15ZGF0YSRzZXgpCmBgYAoKTXVsdGlwbGUgdmFyaWFibGVzOgoKYGBge3J9Cm15ZGF0YSAlPiUKICBtdXRhdGUoYWNyb3NzKGMoCiAgICBhZ2UsCiAgICBwYXJjaCwKICAgIHByZWRpY3Rpb24pLAogICAgYXMubnVtZXJpYykpCgpteWRhdGEgJT4lCiAgbXV0YXRlKGFjcm9zcygKICAgIGFnZTpwYXJjaCwKICAgIGFzLm51bWVyaWMpKQoKbXlkYXRhICU+JQogIG11dGF0ZShhY3Jvc3Mod2hlcmUoaXMuZmFjdG9yKSwgYXMuY2hhcmFjdGVyKSkKYGBgCgojIE1lcmdpbmcvSm9pbnMgeyNtZXJnaW5nfQoKIyMgT3ZlcnZpZXcKCk1lcmdpbmcgKGFsc28gY2FsbGVkIGpvaW5pbmcpIG1lcmdlcyB0d28gZGF0YSBvYmplY3RzIHVzaW5nIGEgc2hhcmVkIHNldCBvZiB2YXJpYWJsZXMgY2FsbGVkICJrZXlzLiIKVGhlIGtleXMgYXJlIHRoZSB2YXJpYWJsZShzKSB0aGF0IHVuaXF1ZWx5IGlkZW50aWZ5IGVhY2ggcm93IChpLmUuLCB0aGV5IGFjY291bnQgZm9yIHRoZSBsZXZlbHMgb2YgbmVzdGluZykuCkluIHNvbWUgZGF0YSBvYmplY3RzLCB0aGUga2V5IG1pZ2h0IGJlIHRoZSBwYXJ0aWNpcGFudCdzIElEIChlLmcuLCBgcGFydGljaXBhbnRJRGApLgpIb3dldmVyLCBzb21lIGRhdGEgb2JqZWN0cyBoYXZlIG11bHRpcGxlIGtleXMuCkZvciBpbnN0YW5jZSwgaW4gbG9uZyBmb3JtIGRhdGEgb2JqZWN0cywgZWFjaCBwYXJ0aWNpcGFudCBtYXkgaGF2ZSBtdWx0aXBsZSByb3dzIGNvcnJlc3BvbmRpbmcgdG8gbXVsdGlwbGUgdGltZXBvaW50cy4KSW4gdGhpcyBjYXNlLCB0aGUga2V5cyBhcmUgYHBhcnRpY2lwYW50SURgIGFuZCBgdGltZXBvaW50YC4KSWYgYSBwYXJ0aWNpcGFudCBoYXMgbXVsdGlwbGUgcm93cyBjb3JyZXNwb25kaW5nIHRvIHRpbWVwb2ludHMgYW5kIG1lYXN1cmVzLCB0aGUga2V5cyBhcmUgYHBhcnRpY2lwYW50SURgLCBgdGltZXBvaW50YCwgYW5kIGBtZWFzdXJlYC4KSW4gZ2VuZXJhbCwgZWFjaCByb3cgc2hvdWxkIGhhdmUgYSB2YWx1ZSBvbiBlYWNoIG9mIHRoZSBrZXlzOyB0aGVyZSBzaG91bGQgYmUgbm8gbWlzc2luZ25lc3MgaW4gdGhlIGtleXMuCgpUbyBtZXJnZSB0d28gb2JqZWN0cywgdGhlIGtleXMgbXVzdCBiZSBwcmVzZW50IGluIGJvdGggb2JqZWN0cy4KVGhlIGtleXMgYXJlIHVzZWQgdG8gbWVyZ2UgdGhlIHZhcmlhYmxlcyBpbiBvYmplY3QgMSAoYHhgKSB3aXRoIHRoZSB2YXJpYWJsZXMgaW4gb2JqZWN0IDIgKGB5YCkuCkRpZmZlcmVudCBtZXJnZSB0eXBlcyBzZWxlY3QgZGlmZmVyZW50IHJvd3MgdG8gbWVyZ2UuCgpOb3RlOiBpZiB0aGUgdHdvIG9iamVjdHMgaW5jbHVkZSB2YXJpYWJsZXMgd2l0aCB0aGUgc2FtZSBuYW1lIChhcGFydCBmcm9tIHRoZSBrZXlzKSwgYFJgIHdpbGwgbm90IGtub3cgaG93IHlvdSB3YW50IGVhY2ggdG8gYXBwZWFyIGluIHRoZSBtZXJnZWQgb2JqZWN0LgpTbywgaXQgd2lsbCBhZGQgYSBzdWZmaXggKGUuZy4sIGAueGAsIGAueWApIHRvIGVhY2ggY29tbW9uIHZhcmlhYmxlIHRvIGluZGljYXRlIHdoaWNoIG9iamVjdCAoaS5lLiwgb2JqZWN0IGB4YCBvciBvYmplY3QgYHlgKSB0aGUgdmFyaWFibGUgY2FtZSBmcm9tLCB3aGVyZSBvYmplY3QgYHhgIGlzIHRoZSBmaXJzdCBvYmplY3TigJRpLmUuLCB0aGUgb2JqZWN0IHRvIHdoaWNoIG9iamVjdCBgeWAgKHRoZSBzZWNvbmQgb2JqZWN0KSBpcyBtZXJnZWQuCkluIGdlbmVyYWwsIGFwYXJ0IGZyb20gdGhlIGtleXMsIHlvdSBzaG91bGQgbm90IGluY2x1ZGUgdmFyaWFibGVzIHdpdGggdGhlIHNhbWUgbmFtZSBpbiB0d28gb2JqZWN0cyB0byBiZSBtZXJnZWQuClRvIHByZXZlbnQgdGhpcywgZWl0aGVyIHJlbW92ZSBvciByZW5hbWUgdGhlIHNoYXJlZCB2YXJpYWJsZSBpbiBvbmUgb2YgdGhlIG9iamVjdHMsIG9yIGluY2x1ZGUgdGhlIHNoYXJlZCB2YXJpYWJsZSBhcyBhIGtleS4KSG93ZXZlciwgYXMgZGVzY3JpYmVkIGFib3ZlLCB5b3Ugc2hvdWxkIGluY2x1ZGUgaXQgYXMgYSBrZXkgKioqb25seSoqKiBpZiBpdCB1bmlxdWVseSBpZGVudGlmaWVzIGVhY2ggcm93IGluIHRlcm1zIG9mIGxldmVscyBvZiBuZXN0aW5nLgoKIyMgRGF0YSBCZWZvcmUgTWVyZ2luZwoKSGVyZSBhcmUgdGhlIGRhdGEgaW4gdGhlIGBteWRhdGFgIG9iamVjdDoKCmBgYHtyfQpteWRhdGEKCmRpbShteWRhdGEpCmBgYAoKSGVyZSBhcmUgdGhlIGRhdGEgaW4gdGhlIGBteWRhdGEyYCBvYmplY3Q6CgpgYGB7cn0KbXlkYXRhMgoKZGltKG15ZGF0YTIpCmBgYAoKIyMgVHlwZXMgb2YgSm9pbnMgeyNtZXJnZVR5cGVzfQoKIyMjIFZpc3VhbCBPdmVydmlldyBvZiBKb2luIFR5cGVzCgpCZWxvdyBpcyBhIHZpc3VhbCB0aGF0IGRlcGljdHMgdmFyaW91cyB0eXBlcyBvZiBtZXJnZXMvam9pbnMuCk9iamVjdCBgeGAgaXMgdGhlIGNpcmNsZSBsYWJlbGVkIGFzIGBBYC4KT2JqZWN0IGB5YCBpcyB0aGUgY2lyY2xlIGxhYmVsZWQgYXMgYEJgLgpUaGUgYXJlYSBvZiBvdmVybGFwIGluIHRoZSBWZW5uIGRpYWdyYW0gaW5kaWNhdGVzIHRoZSByb3dzIG9uIHRoZSBrZXlzIHRoYXQgYXJlIHNoYXJlZCBiZXR3ZWVuIHRoZSB0d28gb2JqZWN0cyAoZS5nLiwgYHBhcnRpY2lwYW50SURgIHZhbHVlcyAxLCAyLCBhbmQgMykuClRoZSBub24tb3ZlcmxhcHBpbmcgYXJlYSBpbmRpY2F0ZXMgdGhlIHJvd3Mgb24gdGhlIGtleXMgdGhhdCBhcmUgdW5pcXVlIHRvIGVhY2ggb2JqZWN0IChlLmcuLCBgcGFydGljaXBhbnRJRGAgdmFsdWVzIDQsIDUsIGFuZCA2IGluIE9iamVjdCBgeGAgYW5kIHZhbHVlcyA3LCA4LCBhbmQgOSBpbiBPYmplY3QgYHlgKS4KVGhlIHNoYWRlZCB5ZWxsb3cgYXJlYSBpbmRpY2F0ZXMgd2hpY2ggcm93cyAob24gdGhlIGtleXMpIGFyZSBrZXB0IGluIHRoZSBtZXJnZWQgb2JqZWN0IGZyb20gZWFjaCBvZiB0aGUgdHdvIG9iamVjdHMsIHdoZW4gdXNpbmcgZWFjaCBvZiB0aGUgbWVyZ2UgdHlwZXMuCkZvciBpbnN0YW5jZSwgYSBsZWZ0IG91dGVyIGpvaW4ga2VlcHMgdGhlIHNoYXJlZCByb3dzIGFuZCB0aGUgcm93cyB0aGF0IGFyZSB1bmlxdWUgdG8gb2JqZWN0IGB4YCwgYnV0IGl0IGRyb3BzIHRoZSByb3dzIHRoYXQgYXJlIHVuaXF1ZSB0byBvYmplY3QgYHlgLgoKIVtUeXBlcyBvZiBtZXJnZXMvam9pbnNdKGltYWdlcy9qb2lucy5wbmcpCgpJbWFnZSBzb3VyY2U6IFtQcmVkaWN0aXZlIEhhY2tzXShodHRwczovL3ByZWRpY3RpdmVoYWNrcy5jb20vP2FsbC10aXBzPWFudGktam9pbnMtd2l0aC1wYW5kYXMpIChhcmNoaXZlZCBhdDogaHR0cHM6Ly9wZXJtYS5jYy9XVjdVLUJTNjgpCgojIyMgRnVsbCBPdXRlciBKb2luIHsjZnVsbEpvaW59CgpBIGZ1bGwgb3V0ZXIgam9pbiBpbmNsdWRlcyBhbGwgcm93cyBpbiAkeCQgKipvcioqICR5JC4KSXQgcmV0dXJucyBjb2x1bW5zIGZyb20gJHgkIGFuZCAkeSQuCkhlcmUgaXMgaG93IHRvIG1lcmdlIHR3byBkYXRhIGZyYW1lcyB1c2luZyBhIGZ1bGwgb3V0ZXIgam9pbiAoaS5lLiwgImZ1bGwgam9pbiIpOgoKYGBge3J9CmZ1bGxKb2luRGF0YSA8LSBtZXJnZShteWRhdGEsIG15ZGF0YTIsIGJ5ID0gIklEIiwgYWxsID0gVFJVRSkKCmZ1bGxKb2luRGF0YQpkaW0oZnVsbEpvaW5EYXRhKQpgYGAKCk9yLCBhbHRlcm5hdGl2ZWx5LCB1c2luZyBgdGlkeXZlcnNlYDoKCmBgYHtyfQpmdWxsX2pvaW4obXlkYXRhLCBteWRhdGEyLCBieSA9ICJJRCIpCmBgYAoKIyMjIExlZnQgT3V0ZXIgSm9pbiB7I2xlZnRKb2lufQoKQSBsZWZ0IG91dGVyIGpvaW4gaW5jbHVkZXMgYWxsIHJvd3MgaW4gJHgkLgpJdCByZXR1cm5zIGNvbHVtbnMgZnJvbSAkeCQgYW5kICR5JC4KSGVyZSBpcyBob3cgdG8gbWVyZ2UgdHdvIGRhdGEgZnJhbWVzIHVzaW5nIGEgbGVmdCBvdXRlciBqb2luICgibGVmdCBqb2luIik6CgpgYGB7cn0KbGVmdEpvaW5EYXRhIDwtIG1lcmdlKG15ZGF0YSwgbXlkYXRhMiwgYnkgPSAiSUQiLCBhbGwueCA9IFRSVUUpCgpsZWZ0Sm9pbkRhdGEKZGltKGxlZnRKb2luRGF0YSkKYGBgCgpPciwgYWx0ZXJuYXRpdmVseSwgdXNpbmcgYHRpZHl2ZXJzZWA6CgpgYGB7cn0KbGVmdF9qb2luKG15ZGF0YSwgbXlkYXRhMiwgYnkgPSAiSUQiKQpgYGAKCiMjIyBSaWdodCBPdXRlciBKb2luIHsjcmlnaHRKb2lufQoKQSByaWdodCBvdXRlciBqb2luIGluY2x1ZGVzIGFsbCByb3dzIGluICR5JC4KSXQgcmV0dXJucyBjb2x1bW5zIGZyb20gJHgkIGFuZCAkeSQuCkhlcmUgaXMgaG93IHRvIG1lcmdlIHR3byBkYXRhIGZyYW1lcyB1c2luZyBhIHJpZ2h0IG91dGVyIGpvaW4gKCJyaWdodCBqb2luIik6CgpgYGB7cn0KcmlnaHRKb2luRGF0YSA8LSBtZXJnZShteWRhdGEsIG15ZGF0YTIsIGJ5ID0gIklEIiwgYWxsLnkgPSBUUlVFKQoKcmlnaHRKb2luRGF0YQpkaW0ocmlnaHRKb2luRGF0YSkKYGBgCgpPciwgYWx0ZXJuYXRpdmVseSwgdXNpbmcgYHRpZHl2ZXJzZWA6CgpgYGB7cn0KcmlnaHRfam9pbihteWRhdGEsIG15ZGF0YTIsIGJ5ID0gIklEIikKYGBgCgojIyMgSW5uZXIgSm9pbiB7I2lubmVySm9pbn0KCkFuIGlubmVyIGpvaW4gaW5jbHVkZXMgYWxsIHJvd3MgdGhhdCBhcmUgaW4gKipib3RoKiogJHgkICoqYW5kKiogJHkkLgpBbiBpbm5lciBqb2luIHdpbGwgcmV0dXJuIG9uZSByb3cgb2YgJHgkIGZvciBlYWNoIG1hdGNoaW5nIHJvdyBvZiAkeSQsIGFuZCBjYW4gZHVwbGljYXRlIHZhbHVlcyBvZiByZWNvcmRzIG9uIGVpdGhlciBzaWRlIChsZWZ0IG9yIHJpZ2h0KSBpZiAkeCQgYW5kICR5JCBoYXZlIG1vcmUgdGhhbiBvbmUgbWF0Y2hpbmcgcmVjb3JkLgpJdCByZXR1cm5zIGNvbHVtbnMgZnJvbSAkeCQgYW5kICR5JC4KSGVyZSBpcyBob3cgdG8gbWVyZ2UgdHdvIGRhdGEgZnJhbWVzIHVzaW5nIGFuIGlubmVyIGpvaW46CgpgYGB7cn0KaW5uZXJKb2luRGF0YSA8LSBtZXJnZShteWRhdGEsIG15ZGF0YTIsIGJ5ID0gIklEIiwgYWxsLnggPSBGQUxTRSwgYWxsLnkgPSBGQUxTRSkKCmlubmVySm9pbkRhdGEKZGltKGlubmVySm9pbkRhdGEpCmBgYAoKT3IsIGFsdGVybmF0aXZlbHksIHVzaW5nIGB0aWR5dmVyc2VgOgoKYGBge3J9CmlubmVyX2pvaW4obXlkYXRhLCBteWRhdGEyLCBieSA9ICJJRCIpCmBgYAoKIyMjIFNlbWkgSm9pbiB7I3NlbWlKb2lufQoKQSBzZW1pIGpvaW4gaXMgYSBmaWx0ZXIuCkEgbGVmdCBzZW1pIGpvaW4gcmV0dXJucyBhbGwgcm93cyBmcm9tICR4JCAqKndpdGgqKiBhIG1hdGNoIGluICR5JC4KVGhhdCBpcywgaXQgZmlsdGVycyBvdXQgcmVjb3JkcyBmcm9tICR4JCB0aGF0IGFyZSBub3QgaW4gJHkkLgpVbmxpa2UgYW4gW2lubmVyIGpvaW5dKCNpbm5lckpvaW4pLCBhIGxlZnQgc2VtaSBqb2luIHdpbGwgbmV2ZXIgZHVwbGljYXRlIHJvd3Mgb2YgJHgkLCBhbmQgaXQgaW5jbHVkZXMgY29sdW1ucyBmcm9tIG9ubHkgJHgkIChub3QgZnJvbSAkeSQpLiAKSGVyZSBpcyBob3cgdG8gbWVyZ2UgdHdvIGRhdGEgZnJhbWVzIHVzaW5nIGEgbGVmdCBzZW1pIGpvaW46CgpgYGB7cn0Kc2VtaUpvaW5EYXRhIDwtIHNlbWlfam9pbihteWRhdGEsIG15ZGF0YTIsIGJ5ID0gIklEIikKCnNlbWlKb2luRGF0YQpkaW0oc2VtaUpvaW5EYXRhKQpgYGAKCiMjIyBBbnRpIEpvaW4geyNhbnRpSm9pbn0KCkFuIGFudGkgam9pbiBpcyBhIGZpbHRlci4KQSBsZWZ0IGFudGkgam9pbiByZXR1cm5zIGFsbCByb3dzIGZyb20gJHgkICoqd2l0aG91dCoqIGEgbWF0Y2ggaW4gJHkkLgpUaGF0IGlzLCBpdCBmaWx0ZXJzIG91dCByZWNvcmRzIGZyb20gJHgkIHRoYXQgYXJlIGluICR5JC4KSXQgcmV0dXJucyBjb2x1bW5zIGZyb20gb25seSAkeCQgKG5vdCBmcm9tICR5JCkuCkhlcmUgaXMgaG93IHRvIG1lcmdlIHR3byBkYXRhIGZyYW1lcyB1c2luZyBhIGxlZnQgYW50aSBqb2luOgoKYGBge3J9CmFudGlKb2luRGF0YSA8LSBhbnRpX2pvaW4obXlkYXRhLCBteWRhdGEyLCBieSA9ICJJRCIpCgphbnRpSm9pbkRhdGEKZGltKGFudGlKb2luRGF0YSkKYGBgCgojIyMgQ3Jvc3MgSm9pbiB7I2Nyb3NzSm9pbn0KCkEgY3Jvc3Mgam9pbiBjb21iaW5lcyBlYWNoIHJvdyBpbiAkeCQgd2l0aCBlYWNoIHJvdyBpbiAkeSQuCgpgYGB7cn0KY3Jvc3NKb2luRGF0YSA8LSBjcm9zc19qb2luKAogIGRhdGEuZnJhbWUocmF0ZXIgPSBjKCJNb3RoZXIiLCJGYXRoZXIiLCJUZWFjaGVyIikpLAogIGRhdGEuZnJhbWUodGltZXBvaW50ID0gMTozKSkKCmNyb3NzSm9pbkRhdGEKZGltKGNyb3NzSm9pbkRhdGEpCmBgYAoKIyBMb25nIHRvIFdpZGUgeyNsb25nVG9XaWRlfQoKT3JpZ2luYWwgZGF0YToKCmBgYHtyfQpmaXNoX2VuY291bnRlcnMKYGBgCgpEYXRhIHdpZGVuZWQgYnkgYSB2YXJpYWJsZSAoYHN0YXRpb25gKSwgdXNpbmcgYHRpZHl2ZXJzZWA6IAoKYGBge3J9CmZpc2hfZW5jb3VudGVycyAlPiUgCiAgcGl2b3Rfd2lkZXIoCiAgICBuYW1lc19mcm9tID0gc3RhdGlvbiwKICAgIHZhbHVlc19mcm9tID0gc2VlbikKYGBgCgojIFdpZGUgdG8gTG9uZyB7I3dpZGVUb0xvbmd9CgpPcmlnaW5hbCBkYXRhOgoKYGBge3J9Cm10Y2FycwpgYGAKCkRhdGEgaW4gbG9uZyBmb3JtLCB0cmFuc2Zvcm1lZCBmcm9tIHdpZGUgZm9ybSB1c2luZyBgdGlkeXZlcnNlYDoKCmBgYHtyfQptdGNhcnMgJT4lIAogIHBpdm90X2xvbmdlcigKICAgIGNvbHMgPSBldmVyeXRoaW5nKCksCiAgICBuYW1lc190byA9ICJ2YXJpYWJsZSIsCiAgICB2YWx1ZXNfdG8gPSAidmFsdWUiKQpgYGAKCiMgQXZlcmFnZSBSYXRpbmdzIEFjcm9zcyBDb2RlcnMgeyNhdmdBY3Jvc3NDb2RlcnN9CgpDcmVhdGUgZGF0YSB3aXRoIG11bHRpcGxlIGNvZGVyczoKCmBgYHtyLCBjbGFzcy5zb3VyY2UgPSAiZm9sZC1oaWRlIn0KaWRXYXZlQ29kZXIgPC0gCiAgZXhwYW5kLmdyaWQoCiAgICBpZCA9IDE6MTAwLAogICAgd2F2ZSA9IDE6MywKICAgIGNvZGVyID0gMTozLAogICAgcG9zaXRpdmVBZmZlY3QgPSBOQSwKICAgIG5lZ2F0aXZlQWZmZWN0ID0gTkEKICApCgppZFdhdmVDb2RlciRwb3NpdGl2ZUFmZmVjdCA8LSBybm9ybShucm93KGlkV2F2ZUNvZGVyKSkKaWRXYXZlQ29kZXIkbmVnYXRpdmVBZmZlY3QgPC0gcm5vcm0obnJvdyhpZFdhdmVDb2RlcikpCgppZFdhdmVDb2RlciAlPiUgCiAgYXJyYW5nZShpZCwgd2F2ZSwgY29kZXIpCmBgYAoKQXZlcmFnZSBkYXRhIGFjcm9zcyBjb2RlcnM6CgpgYGB7cn0KaWRXYXZlIDwtIGlkV2F2ZUNvZGVyICU+JSAKICBncm91cF9ieShpZCwgd2F2ZSkgJT4lIAogIHN1bW1hcmlzZSgKICAgIGFjcm9zcyhldmVyeXRoaW5nKCksCiAgICAgIH4gbWVhbigueCwgbmEucm0gPSBUUlVFKSksCiAgICAuZ3JvdXBzID0gImRyb3AiKSAlPiUgCiAgc2VsZWN0KC1jb2RlcikKCmlkV2F2ZQpgYGAKCiMgTG9vcHMgeyNsb29wc30KCklmIHlvdSB3YW50IHRvIHBlcmZvcm0gdGhlIHNhbWUgY29tcHV0YXRpb24gbXVsdGlwbGUgdGltZXMsIGl0IGNhbiBiZSBmYXN0ZXIgdG8gZG8gaXQgaW4gYSBsb29wIGNvbXBhcmVkIHRvIHdyaXRpbmcgb3V0IHRoZSBzYW1lIGNvbXB1dGF0aW9uIG1hbnkgdGltZXMuCkZvciBpbnN0YW5jZSwgaGVyZSBpcyBhIGxvb3AgdGhhdCBwcmludHMgZWFjaCBlbGVtZW50IG9mIGEgdmVjdG9yIGFuZCB0aGUgbG9vcCBpbmRleCAoYGlgKSB0aGF0IGluZGljYXRlcyB3aGVyZSB0aGUgbG9vcCBpcyBpbiB0ZXJtcyBvZiBpdHMgaXRlcmF0aW9uczoKCmBgYHtyfQpmcnVpdHMgPC0gYygiYXBwbGUiLCAiYmFuYW5hIiwgImNoZXJyeSIpCgpmb3IoaSBpbiAxOmxlbmd0aChmcnVpdHMpKXsKICBwcmludChwYXN0ZSgiVGhlIGxvb3AgaXMgYXQgaW5kZXg6IiwgaSwgc2VwID0gIiAiKSkKICBwcmludChmcnVpdHNbaV0pCn0KYGBgCgojIFNlc3Npb24gSW5mbwoKYGBge3IsIGNsYXNzLnNvdXJjZSA9ICJmb2xkLWhpZGUifQpzZXNzaW9uSW5mbygpCmBgYAo=



Developmental Psychopathology Lab