E-Prime
Merge
Recursive Merge
All specified files regardless of merge status
filename.emrg2
)filename.emrg2
) to
open it in E-DataAidFile
, Export
SPSS
is selected and that the
Unicode
option is unselected: https://mattkmiecik.com/posts/post-Stop-Using-Excel-to-Preprocess-E-Prime-Data/post-Stop-Using-Excel-to-Preprocess-E-Prime-Data.html
(archived at https://perma.cc/N734-4W9X)filename.txt
How to Install MatLab
and follow the relevant
instructionsMatLab
folder in your local directory. You
will keep all of your MatLab related files in this folder.GitHub
accountHAPPE
folderHAPPE User Guide
documentHAPPE User Guide
Setting up HAPPE
section in the user
guide and follow the instructions for setting up the HAPPE pipeline,
including installation of add-ons and eeglabEP_Toolkit
folder to your
Matlab
folder (in your local directory)EP_toolkit
folder:
EP_Toolkit
Documentation
tutorial
tutorial
document, navigate to the
Set Up
section and follow the instructions for installing
and setting up EP Toolkit and FieldTrip. Do NOT follow
instructions for setting up EEGLAB. You have already set up your path to
EEGLAB when you set up the HAPPE pipeline.MatLab
folder:
EP_Toolkit
Fieldtrip-[version number]
/Data Processing/6. MATLAB EEG Pipeline/eegProcessingOddball.m
raw
N
if this is your first time running data through the
pipeline.Y
if you have decided on a set of parameters. Enter the
path to the folder containing the input parameters.N
task
Y
tgt+
frq+
done
N
5
2
128
N
all
60
N
notch
59
61
N
30
.1
fir
Y
after
wavelet thresholdingN
default
hard
N
Y
-200
1000
2
Y
-200
0
Y
Y
amplitude
-150
150
all
Y
N
average
1
N
default
raw
N
if this is your first time running data through the
pipeline.Y
if you have decided on a set of parameters. Enter the
path to the folder containing the input parameters.N
task
Y
cGo++
xGo++
cNG++
xNG++
done
N
5
2
128
N
all
60
N
notch
59
61
N
30
.1
fir
Y
after
wavelet thresholdingN
default
hard
N
Y
-200
1000
17
Y
-200
0
Y
Y
amplitude
-150
150
all
Y
N
average
1
N
default
We have scripts for each task that can prepare files for the HAPPE Pipeline and/or manage the files outputted from HAPPE. These actions can be done manually as well, but the MATLAB scripts make the process more efficient. The scripts will also generate a “log” of all of the files processed through HAPPE to facilitate tracking of EEG data processing. The sections below detail the code used to perform these actions as well as the instructions for using the current scripts.
Note: Before using the scripts/code detailed below, ensure that all filepaths used are in your MATLAB path collection. These may include:
/Data Processing/6. MATLAB EEG Pipeline
)% Set quality threshold parameters
trialCutoff = 10;
passPath
is the location you wish to have files that
meet or exceed the above-defined thresholds to be savedallPath
is the location you wish to have ALL files
outputted from HAPPE saved to (regardless of whether threshold is met or
not)failPath
is the location you wish to have files that do
not meet the above-defined thresholds to be copied to
summPath
is the location you wish to save the file that
lists all files processed through HAPPE in the current batch
% Set paths for file sorting
passPath = 'V:\Processing-Repo\Folder Structure\3 - Files for PCA'; %location for .txt output files
allPath = 'V:\Processing-Repo\Folder Structure\2 - Processed Files'; %location for all processed files to end up
failPath = 'V:\Processing-Repo\Folder Structure\1b - Manual Processing'; %location to copy unsuccessful .mff to for manual process
% Set path for processing summary
summPath = 'Z:\Shared Server\Study Folder\Data Processing\6. MATLAB EEG Pipeline\Processed Data Logs';
% Set path to HAPPE pre-processing script
happeRun = input('Enter the full path to the HAPPE pre-processing file:\n> ','s') ;
% Call and run HAPPE pre-processing script
run(happeRun);
At this point, no more user interaction is required for the script to do its job. The HAPPE pipeline will run, and the remaining MATLAB code in the script file will evaluate the files outputted by HAPPE and move them to the appropriate locations based on this evaluation. See General Post-Happe Steps for examples of the MATLAB code and an explanation of what it does.
% Set quality threshold parameters
trialCutoff = 10;
passPath
is the location you wish to have files that
meet or exceed the above-defined thresholds to be savedallPath
is the location you wish to have ALL files
outputted from HAPPE saved to (regardless of whether threshold is met or
not)failPath
is the location you wish to have files that do
not meet the above-defined thresholds to be copied to
summPath
is the location you wish to save the file that
lists all files processed through HAPPE in the current batch
% Set paths for file sorting
passPath = 'V:\Processing-Repo\Folder Structure\3 - Files for PCA'; %location for .txt output files
allPath = 'V:\Processing-Repo\Folder Structure\2 - Processed Files'; %location for all processed files to end up
failPath = 'V:\Processing-Repo\Folder Structure\1b - Manual Processing'; %location to copy unsuccessful .mff to for manual process
% Set path for processing summary
summPath = 'Z:\Shared Server\Study Folder\Data Processing\6. MATLAB EEG Pipeline\Processed Data Logs';
eeglab
into the
console. You can close it as soon as it opens, but this step ensures
that eeglab is loaded into your current session and helps prevent the
subsequent code from erroring out.Set the filepaths for raw and updated .mff files
% User input for location of raw files
pathRaw = input('Enter the full path to the folder containing the raw files:\n> ','s');
% User input for destination of subsetted files
pathSub = input('Enter the full path to the folder in which to save the subsetted files:\n> ','s');
At this point, there will be no user input/actions necessary until all of the .mff files in the “pathRaw” directory have been updated and saved into the “pathSub” directory. The code that asks the user for the path to HAPPE will run when that process has finished. The following section will describe the code used to automate the process of updated .mff event tags to include accuracy information at the trial level. Move on to Step 3 when the process has completed.
Gather and manage information from the directory housing the raw (.mff) files
% Have MATLAB gather a list of raw files housed in specified location (pathRaw)
dirInfo = struct2table(dir(pathRaw));
% Remove blank rows
noName = strcmp(dirInfo.name, '.') | strcmp(dirInfo.name, '..');
dirInfo(noName, :) = [];
Generate variables necessary for managing raw and updated files
% Generate ID variable
dataFiles = dirInfo(:, "name");
% Add ID variable to file data
dataFiles.ID = extractBefore(dataFiles.name, 8);
% Generate path to read raw data
rawPaths = dataFiles;
rawPaths.path = strcat({pathRaw}, "/", dirInfo.name);
rawPaths = rawPaths(:, ["ID", "path"]);
% Generate path to save updated versions of the data (containing accuracy info at trial level)
subPaths = dataFiles;
subPaths.path = strcat({pathSub}, "/", subPaths.ID, "_sub_fishshark.mff");
subPaths = subPaths(:, ["ID", "path"]);
% Join filepath datatables
mergePaths = join(rawPaths, subPaths, 'Keys', {'ID'})
Use a loop to update the event tags in each .mff file to reflect accuracy of response
Go++
will become cGo++
)for row = 1:height(mergePaths)
% Specify paths
rawFolder = mergePaths{row, "path_rawPaths"}
subFolder = mergePaths{row, "path_subPaths"}
% Read in EEG data
EEGraw = pop_mffimport(char(rawFolder), 'code')
% Create table from "event" field of raw data
EEGevent = struct2table(EEGraw.event)
% Check for the existence of usable rows
checkVars = strcmp(EEGevent.Properties.VariableNames, 'mffkey_cel')
% Skip files without necessary variables
if max(checkVars) == 0
continue
end
% Create table without practice/training trials
keepRows = strcmp(EEGevent.mffkey_cel, '4')
EEGsub = EEGevent(keepRows, :)
% Check for the existence of usable rows
checkRows = max(keepRows)
% Skip files with no usable rows
if checkRows == 0
continue
end
% Get response info at trial level
EEGresp = table(EEGsub.mffkey_obs, EEGsub.mffkey_eval, EEGsub.mffkey_rtim)
EEGresp = rmmissing(EEGresp)
EEGresp = renamevars(EEGresp, ["Var1", "Var2", "Var3"], ["Trial", "Eval", "RTime"])
% Get condition info at trial level
EEGconds = table(EEGsub.mffkey_obs, EEGsub.type)
EEGconds = renamevars(EEGconds, ["Var1", "Var2"], ["Trial", "Cond"])
keepConds = strcmp(EEGconds.Cond, 'Go++') | strcmp(EEGconds.Cond, 'NG++')
EEGcond = EEGconds(keepConds, :)
% Merge datasets
EEGtrials = join(EEGcond, EEGresp)
EEGtrials.RTime = cellfun(@str2num, EEGtrials.RTime)
% Evaluate trials for correct-ness of response
correct = strcmp(EEGtrials.Cond, 'Go++') & strcmp(EEGtrials.Eval, '1') & EEGtrials.RTime > 200 | strcmp(EEGtrials.Cond, 'NG++') & strcmp(EEGtrials.Eval, '0')
EEGtrials.Acc = correct
% Create new code tags including accuracy information
EEGtrials.newCode(EEGtrials.Acc & strcmp(EEGtrials.Cond, 'Go++')) = {'cGo++'}
EEGtrials.newCode(~EEGtrials.Acc & strcmp(EEGtrials.Cond, 'Go++')) = {'xGo++'}
EEGtrials.newCode(EEGtrials.Acc & strcmp(EEGtrials.Cond, 'NG++')) = {'cNG++'}
EEGtrials.newCode(~EEGtrials.Acc & strcmp(EEGtrials.Cond, 'NG++')) = {'xNG++'}
% Subset information for merge
EEGmerge = EEGtrials(:, {'Trial', 'Cond', 'newCode'})
% Prep key in original data
EEGevent.key = strcat(EEGevent.mffkey_obs, EEGevent.type)
% Prep key in merge data
EEGmerge.key = strcat(EEGmerge.Trial, EEGmerge.Cond)
EEGmerge = EEGmerge(:, {'key', 'newCode'})
% Merge new codes with event table
EEGnew = outerjoin(EEGevent, EEGmerge)
% Replace codes where new code is needed
EEGnew.code(~strcmp(EEGnew.newCode, '')) = EEGnew.newCode(~strcmp(EEGnew.newCode, ''))
EEGnew.type(~strcmp(EEGnew.newCode, '')) = EEGnew.newCode(~strcmp(EEGnew.newCode, ''))
EEGnew = table2struct(EEGnew(:, 1:28))
% Replace event table in original struct
EEGraw.event = EEGnew
% Export updated file
pop_mffexport(EEGraw, char(subFolder))
end
% Set path to HAPPE pre-processing script
happeRun = input('Enter the full path to the HAPPE pre-processing file:\n> ','s') ;
% Call and run HAPPE pre-processing script
run(happeRun);
At this point, no more user interaction is required for the script to do its job. The HAPPE pipeline will run, and the remaining MATLAB code in the script file will evaluate the files outputted by HAPPE and move them to the appropriate locations based on this evaluation. See General Post-Happe Steps for examples of the MATLAB code and an explanation of what it does.
Remove files that don’t have any output data from the dataset that will be used to assess file quality
% Create a list of files that received some kind of error message
noTags = any(strcmp(dataQC, 'NO_TAGS'), 2);
allRej = any(strcmp(dataQC, 'ALL_SEG_REJ'), 2);
error = any(strcmp(dataQC, 'ERROR'), 2);
loadFail = any(strcmp(dataQC, 'LOAD_FAIL'), 2);
% Combine filenames with quality data (for some reason, they are not automatically connected by HAPPE)
dataQCNew = [FileNames', dataQC];
% Remove all files in the above lists (those receiving errors) from the quality data
dataQCNew(noTags | allRej | error | loadFail, :) = [];
% Create list of variable names for quality data
dataQCnamesNew = ["File", dataQCnames];
% Save the data as a table for ease of use in subsequent steps
qcTable = cell2table(dataQCNew, 'VariableNames', dataQCnamesNew);
% Subset to ID and threshold information
testInfo = qcTable(:, ["idWave", "File", "Test"]);
Identify the files that meet (or don’t meet) the threshold
% Create a list of files (i.e., rows in the table) that meet threshold
thresholdTest = qcTable.("Number_tgt+_Segs_Post-Seg_Rej") >= trialCutoff & qcTable.("Number_frq+_Segs_Post-Seg_Rej") >= trialCutoff;
% Add a variable to the quality data table that include whether or not the file meet threshold
qcTable.Test = thresholdTest;
Add an identifying variable to be used for data joining down the line
% Generate IDs based on File variable
idWaveQC = extractBefore(qcTable.File, 8);
% Append ID variable to quality data
qcTable.idWave = idWaveQC;
Generate a list of files outputted by HAPPE
% Generate path for HAPPE pre-processing output (using the HAPPE environment variable from user's input of location of raw data for processing)
inputPath = strcat(srcDir, "\5 - processed");
% Read in list of files outputted from HAPPE
preprocessingOutput = dir(inputPath);
% Remove "empty" rows
preprocessingOutput = preprocessingOutput(~ismember({preprocessingOutput.name}, {'.', '..'}));
% Save data as a table for ease of later use
preprocessingOutput = struct2table(preprocessingOutput);
% Subset to file info
fileInfo = preprocessingOutput(:, ["name", "folder"]);
Select only desired files to be moved/copied
% Subset to desired files (AveOverTrial)
fileSubset = fileInfo(contains(fileInfo.name, "AveOverTrials"), :);
Add condition, ID, and threshold-related variables to the file data
Condition
variable (i.e., “Target”
or “Frequent”) should match the name of the condition-specific folders
you wish the files to save to within the processing repo.% Generate list of IDs based on file name variable
idWaveFS = extractBefore(fileSubset.name, 8);
% Add ID list to file data
fileSubset.idWave = idWaveFS;
% Generate list of files belonging to each condition based on file name variable
target = contains(fileSubset.name, "tgt+");
frequent = contains(fileSubset.name, "frq+");
% Create empty variable for condition
fileSubset.cond = cell(size(fileSubset, 1), 1);
% Fill in condition variable based on the lists generated above
fileSubset.cond(target) = {'Target'};
fileSubset.cond(frequent) = {'Frequent'};
fileSubset.cond(~target & ~frequent) = {'All'};
% Join threshold test information
fileTest = join(fileSubset, testInfo);
Prepare data table with information about files that met the threshold
% Create a separate table for only files that meet threshold
movingInfo = fileTest(fileTest.Test, :);
% Create empty columns for filepath variables
movingInfo.destination = cell(size(movingInfo, 1), 1);
movingInfo.origin = cell(size(movingInfo, 1), 1);
movingInfo.processedTo = cell(size(movingInfo, 1), 1);
movingInfo.processedFrom = cell(size(movingInfo, 1), 1);
% Generate file paths based on condition
movingInfo.destination = strcat({passPath}, "\", movingInfo.cond, "\", movingInfo.name);
movingInfo.origin = strcat(movingInfo.folder, "\", movingInfo.name);
movingInfo.processedTo = strcat({allPath}, "\", movingInfo.name);
movingInfo.processedFrom = strcat(movingInfo.folder, "\", movingInfo.name);
Prepare data table with information about files that do NOT meet the threshold
% Create a separate table for only files that did not meet threshold
failFiles = fileTest(~fileTest.Test, ["File", "folder", "name"]);
% Create empty columns for filepath variables
failFiles.destination = cell(size(failFiles, 1), 1);
failFiles.origin = cell(size(failFiles, 1), 1);
failFiles.processedTo = cell(size(failFiles, 1), 1);
failFiles.processedFrom = cell(size(failFiles, 1), 1);
% Generate filepaths based on ID and task
failFiles.destination = strcat({failPath}, "\", failFiles.File);
failFiles.origin = strcat({srcDir}, "\", failFiles.File);
failFiles.processedFrom = strcat(failFiles.folder, "\", failFiles.name);
failFiles.processedTo = strcat({allPath}, "\", failFiles.name);
Generate environment variables that correspond to the column index of relevant variables for file sorting
% Define column locations for each filepath variable
% For files that meet threshold:
toCol = find(strcmp(movingInfo.Properties.VariableNames, "destination"));
fromCol = find(strcmp(movingInfo.Properties.VariableNames, "origin"));
procColto = find(strcmp(movingInfo.Properties.VariableNames, "processedTo"));
procColfrom = find(strcmp(movingInfo.Properties.VariableNames, "processedFrom"));
% For files that do not meet threshold
rawCol = find(strcmp(failFiles.Properties.VariableNames, "origin"));
manCol = find(strcmp(failFiles.Properties.VariableNames, "destination"));
failProcColto = find(strcmp(failFiles.Properties.VariableNames, "processedTo"));
failProcColFrom = find(strcmp(failFiles.Properties.VariableNames, "processedFrom"));
% Define variable to exclude
extraVar = 'Time';
Use a loop to process all files that met threshold
for row = 1:height(movingInfo)
% Specify path info
pathFrom = movingInfo{row, fromCol};
pathTo = movingInfo{row, toCol};
% Read in the data
rawTable = readtable(pathFrom);
% Remove extra column (Time)
cleanTable = rawTable{:, ~strcmp(rawTable.Properties.VariableNames, extraVar)};
% Save without headers
writematrix(cleanTable, pathTo, 'Delimiter', '\t')
end
Use a loop to copy raw (.mff) files into a location that stores files requiring manual processing
for row = 1:height(failFiles)
% Specify path info
pathFrom = failFiles{row, rawCol};
pathTo = failFiles{row, manCol};
% Copy file
copyfile(pathFrom, pathTo)
end
Use a set of loops to copy all HAPPE output files into a folder intended to house all output (whether threshold is met or not)
for row = 1:height(movingInfo)
% Specify path info
pathFrom = movingInfo{row, procColfrom};
pathTo = movingInfo{row, procColto};
% Copy file
copyfile(pathFrom, pathTo);
end
for row = 1:height(failFiles)
% Specify path info
pathFrom = failFiles{row, failProcColFrom};
pathTo = failFiles{row, failProcColto};
% Copy file
copyfile(pathFrom, pathTo);
end
Generate a .txt file listing all processed .mff files
1111_22_oddball.mff
) and save the list to the specified
location (“summPath”)% Create a table from HAPPE FileNames cell array
processedList = cell2table(FileNames(:));
% Rename file variable from default
processedList = renamevars(processedList, {'Var1'}, {'File'});
% Save current date as a string variable
today = string(date());
% Save time as a string variable, replacing ":" with "_" so that file can be written
time = strrep(datestr(now, 'HH:MM:SS:FFF'), ':', "_");
% Generate file name to include current date and time
listFile = strcat("\oddballProcessed_", today, "_", time);
% Generate full path including file name
summPathFull = strcat(summPath, listFile);
% Write table to specified location
writetable(processedList, summPathFull);
ep
in command promptRead
to import filestext (.txt)
average
Adult Hydrocel 128-channel 1.0
Single File Mode
.
R
can rename files in batches Thus, it is
critical to use a standard naming convention to name the files.
For example, an oddball file could be named:frq_1001_36
and tgt_1001_36
cgo_1001_36
and cng_1001_36
Single File Mode
menu use the
Subject
field to denote which characters in the filename
name will determine the participant ID.
1:7
would correspond to
1001_36
Single File Mode
menu use the
Cell
field to denote which characters in the file name will
determine the task condition.
41:43
would correspond to
frq
or tgt
.47:49
that correspond
to cgo
or cng
.Read
and select the
2_9AverageNet128
when promptedMain
and click Edit
Overview
, add the following information:
Oddball
, FishShark
, or
StopSignal
average reference
200
1000
Done
Main
and click Save
.ept
file in the
4-EPT Averages
folder using the following naming
convention: “task_condition_age”. For example, if you were working on
the target condition of oddball for all age groups, you would save the
file as ob_tgt_all
ob_tgt_all
) is not
already in the working environment, read it in using the steps below
Read
EP (.ept)
Read
4 - EPT Averages
folder and select
desired file(s)Open
in the browser window to read the
file(s)Main
to return to main menuEdit
Subjects
paneAll
from among the many options along the
lefthand pane of the editor
Add
gave
and represents the grand
average across all subjectsDone
to exit the editor window, then
Main
to return to the EP Toolkit homeMain
and click PCA
temporal
promax
0
tPCA_ob_tgt_all
)ob_tgt_all
)Main
and click Save
. Save the
tPCA file in the 5-PCA
folderMain
and click PCA
spatial
infomax
0
sPCA_ob_tgt_all
)ob_tgt_all
)Main
and click Save
. Save the
sPCA file in the 5-PCA
folderMain
and click PCA
spatial
infomax
0
tsPCA_ob_tgt_all
)tPCA
file (created in the previous step)Main
and click Save
. Save the
tsPCA file in the 5-PCA
folder.Here, the goal is to select the PCA component that corresponds to the ERP component of interest, and the extraction that supports the intended interpretability of the component.
View
to begin the process of selecting the PCA
component that corresponds to the ERP of interest.
Window
and input the
following:
mean
, maxPeak
, or other
options. (According to Joe Dien), when using amplitudes from PCA
components, it does not matter which option you select—all the different
methods result in comparable p-values when dealing with PCA
components (it would be good to verify this). So, select a method that
makes sense for the story you want to tell. The methods will yield
different results when dealing with the raw waveforms.AutoPCA
or Window
to select
channels. If the peak amplitude is where you expect temporally and
spatially, then use the autoPCA function, and if it is not, then window
to where you expect it to be. This will allow you to report results that
are more interpretable. As Joe Dien described, the way that PCA data are
stored internally in the toolkit are as factor scores (i.e., component
scores). When you extract amplitudes from a PCA component, you are
extracting the factor scores multiplied by a constant (some scaling
factor, representing the electrode where you extract it from). Thus,
according to Joe Dien, the p-values should be the same
regardless of whether you use AutoPCA, or extract from a single
electrode or multiple electrodes (it would be good to verify this). What
is changing is merely the scaling factor (i.e., the constant that is
multiplied by all factor scores). When you select multiple electrodes,
it is computing the PCA-estimated amplitude at each electrode and
performing a simple average across those electrodes. The AutoPCA
extracts the PCA-estimated amplitude at the peak channel and the peak
timepoint. If the waveform is negative-going at the peak channel, and
you are interested in the positive-going dipole, you would select the
peak positive channel to identify the PCA-estimated amplitude of the
positive-going waveform on that PCA component. Nevertheless, even though
you are selecting the PCA-estimated amplitude for a given channel at a
given electrode, there are now “virtual channels”; the estimates include
the contributions of all channels and all timepoints to the extent
that they load onto the PCA component of interest. Thus, even if you
select to window a PCA component from only 1 channel at 1 timepoint, it
is using ALL channels and timepoints in the estimation—this is not the
case if windowing the raw ERP waveforms.6-PCA Components
folder using the following naming
convention: “task_condition_age” (e.g.,ob_tgt_all
).View
and
input the following
ob_tgt_all
)gave
none
Waves
Window
tsPCA-ob_tgt_all
)Channels
button (about halfway down the
Window
window)Factor
+
,
-
, or +/-
)TF01SF01
)If you are only interested in the grand average data and not individual subjects, these instructions will allow you to export a .txt file containing only the grand average data.
Main
screen), select
Edit
ob_tgt_all
) that
contains a “subject” representing the grand average
ob_tgt_all
could be renamed to
ob_tgt_gav
Subjects
from the options at the top of the
editor windowAll
from among the options on the lefthand side
of the Subjects
window
grand average
Delete
on the lefthand side of the editor window
Done
New
to
generate a new file and preserve the originalMain
to return to EP Toolkit “home”Save
Text (.txt)
ob_tgt_gav
) to save
itRead in the grand average waveform data exported from EP Toolkit.
obTgt <- read.table("V:/SRS-ERP-Oddball/Hard/All/4 - EPT Averages/2024-11-05/gave/ob_tgt_gav.txt")
obFrq <- read.table("V:/SRS-ERP-Oddball/Hard/All/4 - EPT Averages/2024-11-05/gave/ob_frq_gav.txt")
Create a subset of data that only includes those electrodes that are part of the clusters identified in EP Toolkit.
# Set electrode clusters
obElectrodes <- c(58, 59, 64, 65, 66, 67, 69, 70, 71, 72, 73, 74, 75, 76, 77, 81, 82, 83, 84, 89, 80, 91, 95, 96, 101)
# Subset to desired electrodes
obTgt_sub <- obTgt[, obElectrodes]
obFrq_sub <- obFrq[, obElectrodes]
Compute averages and create labels for conditions
# Compute averages
obTgt_sub$amplitude <- rowMeans(obTgt_sub)
obFrq_sub$amplitude <- rowMeans(obFrq_sub)
# Remove raw values and add condition labels
obTgt_amps <- obTgt_sub %>% select(amplitude) %>% mutate(condition = "Target")
obFrq_amps <- obFrq_sub %>% select(amplitude) %>% mutate(condition = "Frequent")
Add timing-related information to the data
# Create template
erpTemplate <- data.frame(
time = -199:1000
)
# Merge template with amplitude data
obTgtTimes <- cbind(erpTemplate, obTgt_amps)
obFrqTimes <- cbind(erpTemplate, obFrq_amps)
Combine all conditions into a single data object to be used for plotting
oddball <- rbind(obTgtTimes, obFrqTimes) %>%
select(time, condition, amplitude) %>%
arrange(time)
Generate the waveform figures
ggplot(
data = oddball,
aes(
x = time,
y = amplitude,
group = condition,
color = condition
)
) +
geom_line(linewidth = 1.5) +
scale_x_continuous(
name = "Time Relative to Stimulus Onset (ms)",
limits = c(-200, 1000),
breaks = seq(from = -200, to = 1000, by = 200)) +
scale_y_continuous(
name = "Voltage (microvolts)",
limits = c(-4, 10),
breaks = seq(from = -10, to = 15, by = 2)) +
scale_color_viridis_d()+
theme_classic(base_size = 18) +
theme(
legend.position = c(.7, .9),
legend.title = element_blank())
.txt
files.ept
files.set
filesMFFMatlabIO plugin
File → Import Data → Using EEGLAB functions and plugins → Import Magstim/EGI .mff file
EEG = pop_mffimport({'\\\\lc-rs-store24.hpc.uiowa.edu\\lss_itpetersen\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\0-Raw Data (mff)\\1613_90_oddball.mff'},{'code'},0,0);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'overwrite','on','gui','off');
Select .mff
file(s)
Event type field (may select multiple): code
Filter → Basic FIR Filter
0.1 – 30 Hz
save as new name
EEG = pop_eegfiltnew(EEG, 'locutoff',0.1,'hicutoff',30,'plotfreqz',1);
Tools → Re-reference the data → Compute average reference
EEG = eeg_checkset( EEG );
EEG = pop_reref( EEG, []);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'setname','1613_90_oddball_fil_ref','overwrite','on','gui','off');
eeglab redraw;
Tools → Reject data using Clean Rawdata and ASR
EEG = eeg_checkset( EEG );
EEG = pop_clean_rawdata(EEG, 'FlatlineCriterion',5,'ChannelCriterion',0.8,'LineNoiseCriterion',4,'Highpass','off','BurstCriterion',20,'WindowCriterion',0.25,'BurstRejection','on','Distance','Euclidian','WindowCriterionTolerances',[-Inf 7] );
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'gui','off');
eeglab redraw;
Currently, we run into a bug that yields the following error:
Not enough memory, This is not a bug (Error occurred in function asr_process() at line 132)
As a workaround, type the following code in MATLAB to edit the function:
edit clean_artifacts
Then, change the number in the following line to a larger number (e.g., 256) and click save:
{'max_mem','MaxMem'}, 256, ...
View data to identify bad channels to reject.
Edit → Select data
Specify channels to reject
Specify “on -> remove these”
EEG = eeg_checkset( EEG );
EEG = pop_select( EEG, 'nochannel',{'E44','E56','E57','E113'});
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'setname','1613_90_oddball_fil_ref_chn','overwrite','on','gui','off');
eeglab redraw;
Plot → Channel data (scroll)
Change voltage scale to 50
Settings → Time range to display
Change to 10 seconds
Settings → Number of channels to display
Change to number of channels to view at one time (e.g., 64)
To erase a selected portion of the data, first drag the mouse (holding down the left mouse button) horizontally across the time region of interest to mark it for rejection. To deselect a portion of the data, simply click on the selected region.
After marking some portions of the data for rejection, press REJECT and a new data set will be created with the rejected data omitted. A new dataset will be created with the marked regions removed. Your goal is to reject non-stereotypic artifacts. Do not reject blinks/saccades, because independent component analysis will remove those.
Clicking “Stack” stacks all electrodes on top of each other to more easily identify noisy data.
Click “REJECT” to remove the bad time periods from the data file.
https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html (archived at https://perma.cc/AEU9-GB3B)
https://socialsci.libretexts.org/Bookshelves/Psychology/Book%3A_Applied_Event-Related_Potential_Data_Analysis_(Luck)/14%3A_Appendix_3%3A_Example_Processing_Pipeline (archived at https://perma.cc/9QYQ-BNFE)
The component order returned by runica.m
is in
decreasing order of the EEG variance accounted for by each
component.
Tools → Decompose data by ICA
EEG = eeg_checkset( EEG );
EEG = pop_runica(EEG, 'icatype', 'runica', 'extended',1,'interrupt','on');
[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
eeglab redraw;
Plot → Component maps → 2D
Visually identify independent components to remove
Tools → Inspect/label components by map
Example ICA Artifact Components
Example ICA Brain Components
Overview of ICA Components
Toggle the “Accept” button to reject an independent component, press “OK” to specify it for rejection
Automated detection of artifactual ICA components:
https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html#automated-detection-of-artifactual-ica-components (archived at https://perma.cc/5RQ7-9WBT)
EEG = eeg_checkset( EEG );
EEG = pop_iclabel(EEG, 'default');
[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
EEG = eeg_checkset( EEG );
EEG = pop_icflag(EEG, [NaN NaN;0.9 1;0.9 1;NaN NaN;NaN NaN;NaN NaN;NaN NaN]);
[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
eeglab redraw;
There are six categories of components: Brain, Muscle, Eye, Heart, Line Noise, Channel Noise, and Other
Our goal is to keep the brain components and to remove everything else (i.e., artifacts).
Tools → Classify components using ICLabel → Label components
Tools → Classify components using ICLabel → Flag components as artifacts
Substracting rejected ICA components:
https://eeglab.org/tutorials/06_RejectArtifacts/RunICA.html#subtracting-ica-components-from-data (archived at https://perma.cc/HVH4-Z4SA)
Tools → Remove components
EEG = pop_subcomp( EEG, [1 2 6 7 10 13 21 24 26 31 32 33 36 43 44 51 54 55 59 61 67 68 74 83 90 91 93 99 103 112 113 116 118 121], 0);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 6,'gui','off');
eeglab redraw;
https://sccn.ucsd.edu/pipermail/eeglablist/2016/011199.html (archived at https://perma.cc/97NH-8LAR)
To interpolate channels you would load up one file that has only the good channels, then load up a second file that has the full channel list, and then run the channel interpolation function from the eeglab gui.
Tools → Interpolate Electrodes → Use all channels (or specific channels?) of other dataset
Using all channels of other dataset:
Important Note: Interpolating files will re-reference the data. Average reference the data after interpolating channels.
EEG = eeg_checkset( EEG );
EEG = pop_interp(EEG, ALLEEG(3).chanlocs, 'spherical');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 4,'gui','off');
eeglab redraw;
Using specific channels of other dataset:
EEG = eeg_checkset( EEG );
EEG = pop_interp(EEG, ALLEEG(3).chanlocs([44 56 57 113]), 'spherical');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'gui','off');
eeglab redraw;
Removed channels:
EEG = eeg_checkset( EEG );
EEG = pop_interp(EEG, EEG.chaninfo.nodatchans([44 56 57 113]), 'spherical');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 3,'gui','off');
EEG = eeg_checkset( EEG );
eeglab redraw;
Data channels:
EEG = eeg_checkset( EEG );
EEG = pop_interp(EEG, [44 56 57 113], 'spherical');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'gui','off');
eeglab redraw;
Tools → Re-reference the data → Compute average reference
EEG = eeg_checkset( EEG );
EEG = pop_reref( EEG, []);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'setname','1613_90_oddball_fil_ref','overwrite','on','gui','off');
eeglab redraw;
Tools → Extract Epochs
EEG = eeg_checkset( EEG );
EEG = pop_epoch( EEG, { 'frq+' 'tgt+' }, [-0.2 1], 'newname', '1613_90_oddball_fil_ref epochs', 'epochinfo', 'yes');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'overwrite','on','gui','off');
EEG = eeg_checkset( EEG );
EEG = pop_rmbase( EEG, [-200 0] ,[]);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 1,'overwrite','on','gui','off');
eeglab redraw;
% Starting EEG Lab
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;
%% Helpful documentation is located here
% https://eeglab.org/tutorials/11_Scripting/Using_EEGLAB_history.html (archived at https://perma.cc/Y687-5GKE)
% https://eeglab.org/tutorials/ConceptsGuide/Data_Structures.html (archived at https://perma.cc/5F39-5S32)
%Loading in the Dataset
EEG = pop_mffimport({'R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\0-Raw Data (mff)\\1613_90_oddball.mff'},{'code'},0,0);
EEG.setname='raw';
EEG = eeg_checkset( EEG );
%Storing the current dataset
[ALLEEG, EEG] = eeg_store( ALLEEG, EEG, 1);
% refreshing the graphical interface
eeglab redraw;
%Filter the data
EEG = pop_eegfiltnew(ALLEEG(1), 'locutoff',0.1,'hicutoff',30,'plotfreqz',1);
%Save the Filtered dataset
%ALLEEG EEG CURRENTSET seems to just be a name for all of the current data
%sets
%pop_newset seems to save the dataset in both memory and in the toolkit
[ALLEEG, EEG, CURRENTSET] = pop_newset(ALLEEG, EEG, 2,'setname','fil','savenew','R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\MATLAB\\1-Filtering (fil)\\tcid_wave.set','gui','off');
eeglab redraw;
% Average referencing
%EEG = eeg_checkset( EEG );
EEG = pop_reref( ALLEEG(2), []);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 3,'setname','Avg Ref','savenew','R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\MATLAB\\9-Average Reference (ref)\\tcid_wave_avg.set','gui','off');
eeglab redraw;
% Rejecting the artifacts
% testing bumping the
EEG = pop_clean_rawdata(ALLEEG(3), 'FlatlineCriterion',5,'ChannelCriterion',0.8,'LineNoiseCriterion',4,'Highpass','off','BurstCriterion',30,'WindowCriterion',0.25,'BurstRejection','on','Distance','Euclidian','WindowCriterionTolerances',[-Inf 7] );
%Saving cleaned dataset
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 4,'setname','clean data','savenew','R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\MATLAB\\10-Clean Artificats (clean)\\tcid_wave_clean.set','gui','off');
eeglab redraw;
% Placeholder to manually remove bad channels
% ICA components
EEG = pop_runica(ALLEEG(4), 'icatype', 'runica', 'extended', 1,'interrupt','on');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 5,'setname','ICA test','savenew','R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\MATLAB\\11-ICA\\tcid_wave_ICA.set','gui','off');
eeglab redraw;
%Manually reject ICA components
EEG = pop_subcomp( EEG, [1 2 6 7 10 13 21 24 26 31 32 33 36 43 44 51 54 55 59 61 67 68 74 83 90 91 93 99 103 112 113 116 118 121], 0);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 6,'gui','off');
eeglab redraw;
% Place holder to remind to manually remove the channels that we would
% like to reject
% taking the EEG channel lock of the first (raw) dataset
EEG = eeg_checkset( EEG );
EEG = pop_interp(ALLEEG(5), ALLEEG(1).chanlocs, 'spherical');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 6,'setname','Interpolated','savenew','R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\MATLAB\\12-Interpolate\\tcid_wave_Interpolate.set','gui','off');
eeglab redraw;
% Segmenting the Data
EEG = eeg_checkset( EEG );
EEG = pop_epoch( ALLEEG(6), { 'frq+' 'tgt+' }, [-0.2 1], 'newname', 'tcid_wave_segmented', 'epochinfo', 'yes');
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 7,'setname','Segmented','savenew','R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\MATLAB\\13-Segment\\tcid_wave_Segment.set','gui','off');
eeglab redraw;
% Baseline Correcting the Data
EEG = eeg_checkset( EEG );
EEG = pop_rmbase( ALLEEG(7), [-200 0] ,[]);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, 8,'setname','Baseline Correct','savenew','R:\\Lab\\Studies\\School Readiness Study\\Data\\LV2\\ERP\\Oddball\\MATLAB\\14-Baseline-Correct\\tcid_wave_baseline-correct.set','gui','off');
eeglab redraw;
Warning messages appeared when using the automatic cleaning of data. We may have to send a dataset to someone so they can check on it. Some documentation is found here:
This script batch reads in files, filters them, average references, and automatically cleans them. After that, this script reads in the cleaned files for manually processing to remove bad time periods and bad channels
%10/20/22 Working script that reads everything into matlab
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Location of Raw oddball files
rawOddballFiles = '\\lc-rs-store24.hpc.uiowa.edu\lss_itpetersen\Lab\Studies\School Readiness Study\Data\LV2\ERP\Oddball\MATLAB\0-Raw\';
%Location of path to save cleaned files
cleanAutoPath = '\\lc-rs-store24.hpc.uiowa.edu\lss_itpetersen\Lab\Studies\School Readiness Study\Data\LV2\ERP\Oddball\MATLAB\10-Clean Artificats (clean)\';
%all oddball files in the directory to be processed
filesInDirectory = dir(fullfile(rawOddballFiles, '*.mff')); %Reading the files in the directory
%Listing the number of subjects for the number of times to loop
numberOfSubject = height(filesInDirectory);
%Names of all the files in the directory
listOfSubjects={filesInDirectory.name};
%splitting the filename up
filenameSplit = regexp(listOfSubjects, '_', 'split');
id = cellfun(@(x) x{1},filenameSplit,'un',0); %getting the id's
wave = cellfun(@(x) x{2},filenameSplit,'un',0); %getting the waves
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;
for i=1:numberOfSubject
%%%% Importing Data
path = [rawOddballFiles,filesInDirectory(i).name];
tcid = char(strcat(id(i),'_', wave(i))); %combining the TCID and wave
EEG = pop_mffimport({path},{'code'},0,0);
% Saving the data in memory
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, i,'setname', tcid,'gui','off');
% Filtering the data
EEG = pop_eegfiltnew(ALLEEG(i), 'locutoff',0.1,'hicutoff',30,'plotfreqz',1);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, i,'overwrite','on','gui','off');
% Average Referencing
EEG = pop_reref( ALLEEG(i), []);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, i,'overwrite','on','gui','off');
% They strongly advise importing channel locations before using this
% function.
%Cleaning the Data
EEG = pop_clean_rawdata(ALLEEG(i), 'FlatlineCriterion',5,'ChannelCriterion',0.8,'LineNoiseCriterion',4,'Highpass','off','BurstCriterion',30,'WindowCriterion',0.25,'BurstRejection','on','Distance','Euclidian','WindowCriterionTolerances',[-Inf 7]);
nameClean = [tcid,'_autoClean.set'];
savePathClean = [cleanAutoPath,nameClean];
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, i,'setname', nameClean, 'savenew', savePathClean, 'gui','off', 'overwrite', 'on');
end
eeglab redraw:
%% Reading in automatically cleaned datasets
%%%%%%%%%%%%%%
% Clear Data becasue to overwrite anything in memory
%%%%%%%%%%%%%%
ALLEEG = [];
EEG = [];
% Adding the path for cleaned files
cleanAutoPath = '\\lc-rs-store24.hpc.uiowa.edu\lss_itpetersen\Lab\Studies\School Readiness Study\Data\LV2\ERP\Oddball\MATLAB\10-Clean Artificats (clean)\';
%Starting EEGLAB
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;
%Location of cleaned oddball data
filesInDirectoryClean = dir(fullfile(cleanAutoPath, '*.set')); %Reading the files in the directory
%Listing the number of subjects for the number of times to loop
numberOfSubjectClean = height(filesInDirectoryClean);
%Names of all the files in the directory
listOfSubjectsClean = {filesInDirectoryClean.name};
%splitting the filename up
filenameSplitClean = regexp(listOfSubjectsClean, '_', 'split');
id = cellfun(@(x) x{1},filenameSplitClean,'un',0); %getting the id's
wave = cellfun(@(x) x{2},filenameSplitClean,'un',0); %getting the waves
for i=1:numberOfSubjectClean
%%%% Importing Data
tcidClean = char(strcat(id(i),'_', wave(i), '_autoClean.set')); %combining the TCID and wave to name the file
EEG = pop_loadset('filename', tcidClean, 'filepath', cleanAutoPath);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, i,'setname', tcidClean,'gui','off');
end
eeglab redraw;
Tools
> Inspect/reject data by eye
REJECT
and overwrite the file in memory
Overwrite it in memory (set=yes; unset=create a new dataset)
Edit
then Select Data
Channel range
field and select the checkbox under
on->remove these
and select Ok
tcid_wave_manualClean.set
in the
following drive path
\\lc-rs-store24.hpc.uiowa.edu\lss_itpetersen\Lab\Studies\School Readiness Study\Data\LV2\ERP\Oddball\MATLAB\11-Manually Cleaned
23 56 57 97
This script runs the ICA. We’ll want to think about how to automatically reject the components here. Once this runs, see the ICA section to reject components. Tools → Inspect/label components by map is how to reject components.
% Running the ICA
%% Reading in the manually cleaned datasets
%%%%%%%%%%%%%%
% Clear Data becasue to overwrite anything in memory
%%%%%%%%%%%%%%
ALLEEG = [];
EEG = [];
% Adding the path for cleaned files
manualCleanPath = '\\lc-rs-store24.hpc.uiowa.edu\lss_itpetersen\Lab\Studies\School Readiness Study\Data\LV2\ERP\Oddball\MATLAB\11-Manually Cleaned\';
%Starting EEGLAB
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;
%Location of cleaned oddball data
filesInDirectoryManualClean = dir(fullfile(manualCleanPath, '*.set')); %Reading the files in the directory
%Listing the number of subjects for the number of times to loop
numberOfSubjectManualClean = height(filesInDirectoryManualClean);
%Names of all the files in the directory
listOfSubjectsManualClean = {filesInDirectoryManualClean.name};
%splitting the filename up
filenameSplitManualClean = regexp(listOfSubjectsManualClean, '_', 'split');
id = cellfun(@(x) x{1},filenameSplitManualClean,'un',0); %getting the id's
wave = cellfun(@(x) x{2},filenameSplitManualClean,'un',0); %getting the waves
for i=1:numberOfSubjectManualClean
%%%% Importing Data
tcidClean = char(strcat(id(i),'_', wave(i), '_manualClean.set')); %combining the TCID and wave to name the file
EEG = pop_loadset('filename', tcidClean, 'filepath', manualCleanPath);
[ALLEEG EEG CURRENTSET] = pop_newset(ALLEEG, EEG, i,'setname', tcidClean,'gui','off');
%%% Running the ICA
EEG = eeg_checkset( EEG );
EEG = pop_runica(EEG, 'icatype', 'runica', 'extended',1,'interrupt','on');
[ALLEEG EEG] = eeg_store(ALLEEG, EEG, CURRENTSET);
eeglab redraw;
end
eeglab redraw;
Options that say “AverageNet128” are suitable for our 128 channel cap when selecting the template option when reading in text files. These are age-normed coordinates provided by EGI. So, “2_9” is age-normed for 2 to 9 year olds.