Adapted from brms
workshop by Paul-Christian Bürkner
#install.packages("remotes")
#remotes::install_github("DevPsyLab/petersenlab")
library("lme4")
library("rstan")
library("brms")
library("bayestestR")
library("mice")
set.seed(52242)
sampleSize <- 1000
id <- rep(1:100, each = 10)
X <- rnorm(sampleSize)
M <- 0.5*X + rnorm(sampleSize)
Y <- 0.7*M + rnorm(sampleSize)
X[sample(1:length(X), size = 10)] <- NA
M[sample(1:length(M), size = 10)] <- NA
Y[sample(1:length(Y), size = 10)] <- NA
mydata <- data.frame(
id = id,
X = X,
Y = Y,
M = M)
data("sleepstudy", package = "lme4")
conditions <- make_conditions(sleepstudy, "Subject")
methods(class = "brmsfit")
[1] add_criterion add_ic as_draws_array
[4] as_draws_df as_draws_list as_draws_matrix
[7] as_draws_rvars as_draws as.array
[10] as.data.frame as.matrix as.mcmc
[13] autocor bayes_factor bayes_R2
[16] bayesfactor_models bayesfactor_parameters bayesfactor_restricted
[19] bci bridge_sampler check_prior
[22] ci coef conditional_effects
[25] conditional_smooths control_params default_prior
[28] describe_posterior describe_prior diagnostic_draws
[31] diagnostic_posterior effective_sample equivalence_test
[34] estimate_density eti expose_functions
[37] family fitted fixef
[40] formula getCall hdi
[43] hypothesis kfold log_lik
[46] log_posterior logLik loo_compare
[49] loo_epred loo_linpred loo_model_weights
[52] loo_moment_match loo_predict loo_predictive_interval
[55] loo_R2 loo_subsample loo
[58] LOO map_estimate marginal_effects
[61] marginal_smooths mcmc_plot mcse
[64] mediation model_to_priors model_weights
[67] model.frame nchains ndraws
[70] neff_ratio ngrps niterations
[73] nobs nsamples nuts_params
[76] nvariables p_direction p_map
[79] p_rope p_significance pairs
[82] parnames plot point_estimate
[85] post_prob posterior_average posterior_epred
[88] posterior_interval posterior_linpred posterior_predict
[91] posterior_samples posterior_smooths posterior_summary
[94] pp_average pp_check pp_mixture
[97] predict predictive_error predictive_interval
[100] prepare_predictions print prior_draws
[103] prior_summary psis ranef
[106] reloo residuals restructure
[109] rhat rope sexit_thresholds
[112] si simulate_prior spi
[115] stancode standata stanplot
[118] summary unupdate update
[121] VarCorr variables vcov
[124] waic WAIC weighted_posteriors
see '?methods' for accessing help and source code
fit_sleep1 <- brm(
Reaction ~ 1 + Days,
data = sleepstudy,
seed = 52242)
Compiling Stan program...
Start sampling
fit_sleep2 <- brm(
Reaction ~ 1 + Days + (1 | Subject),
data = sleepstudy,
seed = 52242)
Compiling Stan program...
Start sampling
fit_sleep3 <- brm(
Reaction ~ 1 + Days + (1 + Days | Subject),
data = sleepstudy,
seed = 52242
)
Compiling Stan program...
Start sampling
Warning: There were 1 divergent transitions after warmup. See
https://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
to find out why this is a problem and how to eliminate them.
Warning: Examine the pairs() plot to diagnose sampling problems
For convergence, Rhat
values should not be above
1.00.
summary(fit_sleep3)
Warning: There were 1 divergent transitions after warmup. Increasing
adapt_delta above 0.8 may help. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
Family: gaussian
Links: mu = identity; sigma = identity
Formula: Reaction ~ 1 + Days + (1 + Days | Subject)
Data: sleepstudy (Number of observations: 180)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
Multilevel Hyperparameters:
~Subject (Number of levels: 18)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sd(Intercept) 26.73 6.85 15.35 42.67 1.00 1795 2510
sd(Days) 6.51 1.52 4.09 10.09 1.00 1468 1809
cor(Intercept,Days) 0.09 0.30 -0.48 0.69 1.00 1052 1442
Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
Intercept 251.51 7.63 236.39 266.74 1.00 1693 2026
Days 10.44 1.72 7.05 13.83 1.00 1151 1568
Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma 25.93 1.59 23.04 29.27 1.00 3810 2691
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
prior_summary(fit_sleep3)
variables(fit_sleep3)
[1] "b_Intercept" "b_Days"
[3] "sd_Subject__Intercept" "sd_Subject__Days"
[5] "cor_Subject__Intercept__Days" "sigma"
[7] "Intercept" "r_Subject[308,Intercept]"
[9] "r_Subject[309,Intercept]" "r_Subject[310,Intercept]"
[11] "r_Subject[330,Intercept]" "r_Subject[331,Intercept]"
[13] "r_Subject[332,Intercept]" "r_Subject[333,Intercept]"
[15] "r_Subject[334,Intercept]" "r_Subject[335,Intercept]"
[17] "r_Subject[337,Intercept]" "r_Subject[349,Intercept]"
[19] "r_Subject[350,Intercept]" "r_Subject[351,Intercept]"
[21] "r_Subject[352,Intercept]" "r_Subject[369,Intercept]"
[23] "r_Subject[370,Intercept]" "r_Subject[371,Intercept]"
[25] "r_Subject[372,Intercept]" "r_Subject[308,Days]"
[27] "r_Subject[309,Days]" "r_Subject[310,Days]"
[29] "r_Subject[330,Days]" "r_Subject[331,Days]"
[31] "r_Subject[332,Days]" "r_Subject[333,Days]"
[33] "r_Subject[334,Days]" "r_Subject[335,Days]"
[35] "r_Subject[337,Days]" "r_Subject[349,Days]"
[37] "r_Subject[350,Days]" "r_Subject[351,Days]"
[39] "r_Subject[352,Days]" "r_Subject[369,Days]"
[41] "r_Subject[370,Days]" "r_Subject[371,Days]"
[43] "r_Subject[372,Days]" "lprior"
[45] "lp__"
coef(fit_sleep3)
$Subject
, , Intercept
Estimate Est.Error Q2.5 Q97.5
308 254.0551 13.01284 227.8884 278.5841
309 211.3558 13.22181 184.4714 236.2753
310 213.0988 13.16381 186.4747 238.4973
330 274.6631 13.47012 249.0079 301.7730
331 272.7292 13.08615 248.4475 299.1193
332 260.2286 12.48478 236.3837 285.6190
333 267.7372 12.46235 244.6130 292.4716
334 244.1334 12.15931 219.7139 268.0252
335 250.5754 13.64444 224.0874 277.3162
337 285.9261 13.36021 259.9145 312.8108
349 226.5263 13.17249 199.0440 251.3439
350 239.2886 13.53475 211.8912 264.5031
351 256.0125 12.48011 232.1178 281.1492
352 272.0472 12.60619 248.0108 297.2377
369 254.5540 12.22773 230.0027 277.9011
370 226.9908 13.58638 199.6275 252.5526
371 251.8782 12.04853 228.2643 275.9140
372 263.7822 12.23356 240.8359 288.3172
, , Days
Estimate Est.Error Q2.5 Q97.5
308 19.6074451 2.514940 14.7072608 24.705811
309 1.8177425 2.499286 -2.8285966 6.818598
310 4.8922010 2.481539 0.1064874 9.852368
330 5.7488917 2.562112 0.5850291 10.579395
331 7.5622754 2.462179 2.6457945 12.227480
332 10.1993887 2.374254 5.5000127 14.720567
333 10.3639734 2.383374 5.5851281 15.076151
334 11.5364194 2.359143 6.9781400 16.236849
335 -0.1677765 2.643660 -5.4487757 5.040595
337 19.1484855 2.495961 14.3233721 24.008153
349 11.5813121 2.505751 6.8147401 16.720071
350 16.9635793 2.551501 12.0656223 22.035578
351 7.4819371 2.385631 2.7193498 12.038451
352 14.0305526 2.357995 9.2909766 18.642498
369 11.3662234 2.342286 6.8789298 15.927235
370 15.1160226 2.527380 10.1317020 20.075526
371 9.5284324 2.315761 4.9194399 14.012695
372 11.7299988 2.325239 7.0906223 16.233601
plot(fit_sleep3, ask = FALSE)
plot(conditional_effects(fit_sleep1), points = TRUE)
# re_formula = NULL ensures that group-level effects are included
ce2 <- conditional_effects(
fit_sleep3,
conditions = conditions,
re_formula = NULL)
plot(ce2, ncol = 6, points = TRUE)
Evaluate how closely the posterior predictions match the observed values. If they do not match the general pattern of the observed values, a different response distribution may be necessary.
pp_check(fit_sleep3)
Using 10 posterior draws for ppc type 'dens_overlay' by default.
pp_check(fit_sleep3, type = "dens_overlay")
Using 10 posterior draws for ppc type 'dens_overlay' by default.
pp_check(fit_sleep3, "error_scatter_avg")
Using all posterior draws for ppc type 'error_scatter_avg' by default.
fitted(fit_sleep3)
Estimate Est.Error Q2.5 Q97.5
[1,] 254.0551 13.012843 227.8884 278.5841
[2,] 273.6626 11.113986 251.3713 294.8805
[3,] 293.2700 9.505637 274.2675 311.8816
[4,] 312.8775 8.357237 296.3990 329.4955
[5,] 332.4849 7.872708 317.0295 348.1170
[6,] 352.0924 8.171016 336.2176 368.0066
[7,] 371.6998 9.176127 354.1220 389.4363
[8,] 391.3072 10.690508 370.5681 412.0605
[9,] 410.9147 12.530860 386.4152 435.2729
[10,] 430.5221 14.574217 401.9619 459.1956
[11,] 211.3558 13.221809 184.4714 236.2753
[12,] 213.1735 11.362145 190.0534 234.5760
[13,] 214.9912 9.791493 195.1046 233.6490
[14,] 216.8090 8.668402 199.1447 233.5706
[15,] 218.6267 8.179358 202.3385 234.3633
[16,] 220.4445 8.435371 203.5882 236.3208
[17,] 222.2622 9.375603 203.4594 239.8009
[18,] 224.0800 10.823180 202.4925 244.5022
[19,] 225.8977 12.604499 201.1395 249.5959
[20,] 227.7154 14.597891 198.6731 255.6506
[21,] 213.0988 13.163815 186.4747 238.4973
[22,] 217.9910 11.300065 195.1809 239.7089
[23,] 222.8832 9.716634 203.1292 241.6534
[24,] 227.7754 8.570330 210.6063 244.3683
[25,] 232.6676 8.050106 216.8407 248.2433
[26,] 237.5598 8.274898 221.2506 253.8004
[27,] 242.4520 9.190197 224.5019 260.5614
[28,] 247.3442 10.618925 226.7249 268.2020
[29,] 252.2364 12.384647 228.3492 276.5317
[30,] 257.1286 14.363617 229.0311 285.3348
[31,] 274.6631 13.470116 249.0079 301.7730
[32,] 280.4119 11.486251 257.7297 303.4735
[33,] 286.1608 9.775108 267.0888 305.5981
[34,] 291.9097 8.502961 275.4806 308.3853
[35,] 297.6586 7.885226 282.4659 313.1907
[36,] 303.4075 8.073542 287.6877 319.4632
[37,] 309.1564 9.017550 291.9216 327.5592
[38,] 314.9053 10.515663 294.6965 335.5844
[39,] 320.6542 12.368144 296.1826 344.6095
[40,] 326.4031 14.439239 297.8141 354.4234
[41,] 272.7292 13.086150 248.4475 299.1193
[42,] 280.2915 11.230126 259.1573 302.8477
[43,] 287.8537 9.649291 269.5346 307.5840
[44,] 295.4160 8.498621 279.5477 312.6518
[45,] 302.9783 7.966739 287.9478 318.8925
[46,] 310.5406 8.175327 294.8251 327.0097
[47,] 318.1028 9.073459 300.4301 335.9344
[48,] 325.6651 10.485419 305.2906 346.0395
[49,] 333.2274 12.234582 309.4211 357.8104
[50,] 340.7897 14.196854 312.9635 369.3380
[51,] 260.2286 12.484784 236.3837 285.6190
[52,] 270.4280 10.781694 249.7156 292.4677
[53,] 280.6274 9.375189 262.3207 299.4393
[54,] 290.8268 8.415319 274.6495 307.1901
[55,] 301.0262 8.063199 285.3182 316.7396
[56,] 311.2256 8.395649 294.8786 327.7737
[57,] 321.4250 9.339852 303.3050 338.9929
[58,] 331.6244 10.735591 310.5276 351.6272
[59,] 341.8237 12.431699 317.2813 365.7252
[60,] 352.0231 14.321856 323.4303 379.2967
[61,] 267.7372 12.462346 244.6130 292.4716
[62,] 278.1012 10.721121 258.0140 299.3701
[63,] 288.4652 9.270154 270.7844 306.5566
[64,] 298.8292 8.263777 282.5528 315.0321
[65,] 309.1931 7.874339 293.7298 324.5191
[66,] 319.5571 8.190322 303.6234 335.2091
[67,] 329.9211 9.138844 312.1717 347.2774
[68,] 340.2850 10.550664 319.9648 360.5059
[69,] 350.6490 12.266846 327.0562 374.2666
[70,] 361.0130 14.177286 333.8326 388.6119
[71,] 244.1334 12.159314 219.7139 268.0252
[72,] 255.6699 10.462954 234.6865 276.3664
[73,] 267.2063 9.068020 249.5953 285.2923
[74,] 278.7427 8.131156 262.8088 294.9306
[75,] 290.2791 7.818792 274.8134 305.8992
[76,] 301.8155 8.202586 285.4333 318.3049
[77,] 313.3520 9.195784 295.2755 331.5079
[78,] 324.8884 10.628903 304.0289 345.6192
[79,] 336.4248 12.349730 312.0158 360.4332
[80,] 347.9612 14.254444 320.2001 376.1371
[81,] 250.5754 13.644441 224.0874 277.3162
[82,] 250.4077 11.582134 228.0384 273.2162
[83,] 250.2399 9.802999 231.0375 269.9630
[84,] 250.0721 8.487026 233.5038 267.0029
[85,] 249.9043 7.870089 234.8263 265.7494
[86,] 249.7366 8.113252 234.3483 265.7847
[87,] 249.5688 9.148186 231.4844 267.5545
[88,] 249.4010 10.748564 229.1778 270.7564
[89,] 249.2332 12.702433 225.1245 274.8328
[90,] 249.0655 14.871109 220.7681 278.9884
[91,] 285.9261 13.360213 259.9145 312.8108
[92,] 305.0746 11.449491 282.7247 327.8004
[93,] 324.2231 9.805408 305.0686 343.3848
[94,] 343.3716 8.582590 326.4366 360.1231
[95,] 362.5201 7.977175 346.9321 378.0883
[96,] 381.6686 8.128310 365.4243 397.6564
[97,] 400.8170 8.997953 382.9835 418.0397
[98,] 419.9655 10.407523 399.1847 440.0881
[99,] 439.1140 12.170849 415.2072 462.7225
[100,] 458.2625 14.156349 430.2394 485.9227
[101,] 226.5263 13.172492 199.0440 251.3439
[102,] 238.1076 11.293795 214.7298 258.8494
[103,] 249.6889 9.702712 229.9850 267.7737
[104,] 261.2703 8.561135 243.7951 277.5529
[105,] 272.8516 8.062320 256.4860 288.3810
[106,] 284.4329 8.322654 267.7087 300.5798
[107,] 296.0142 9.278453 277.7180 314.2151
[108,] 307.5955 10.745715 286.4011 328.6732
[109,] 319.1768 12.546261 294.5525 344.0958
[110,] 330.7581 14.556940 302.5549 359.6565
[111,] 239.2886 13.534750 211.8912 264.5031
[112,] 256.2522 11.590786 232.8323 277.9377
[113,] 273.2158 9.925901 252.9023 292.3892
[114,] 290.1794 8.701781 272.5454 307.2396
[115,] 307.1430 8.120270 290.7261 322.9692
[116,] 324.1065 8.317265 307.6538 340.3518
[117,] 341.0701 9.243123 322.2983 359.0851
[118,] 358.0337 10.710464 336.2023 379.2235
[119,] 374.9973 12.530486 349.5683 399.4199
[120,] 391.9608 14.571631 362.6754 420.3377
[121,] 256.0125 12.480114 232.1178 281.1492
[122,] 263.4945 10.706893 242.7513 284.8154
[123,] 270.9764 9.214356 252.9802 289.3028
[124,] 278.4584 8.158040 262.6011 294.8159
[125,] 285.9403 7.719155 270.9712 301.2460
[126,] 293.4222 7.999972 278.1956 309.1054
[127,] 300.9042 8.932873 283.6480 318.6625
[128,] 308.3861 10.342890 288.2687 329.0312
[129,] 315.8680 12.063871 292.1932 340.2246
[130,] 323.3500 13.981454 296.1423 351.4170
[131,] 272.0472 12.606186 248.0108 297.2377
[132,] 286.0777 10.909099 265.2308 307.6539
[133,] 300.1083 9.498486 281.8385 318.8017
[134,] 314.1388 8.517883 297.6714 330.8056
[135,] 328.1694 8.124512 312.2333 344.1914
[136,] 342.1999 8.401271 325.7069 358.9466
[137,] 356.2305 9.288450 337.9854 375.1359
[138,] 370.2610 10.634356 349.0755 391.7013
[139,] 384.2916 12.289184 360.2229 409.3132
[140,] 398.3221 14.144923 370.6524 426.8190
[141,] 254.5540 12.227726 230.0027 277.9011
[142,] 265.9202 10.525750 244.8474 285.9942
[143,] 277.2865 9.112526 259.4349 294.5405
[144,] 288.6527 8.139870 272.5957 304.3956
[145,] 300.0189 7.774923 284.8119 315.3846
[146,] 311.3851 8.100247 295.4707 327.6310
[147,] 322.7514 9.041635 305.0207 340.5801
[148,] 334.1176 10.433645 313.6148 354.9469
[149,] 345.4838 12.122019 321.5245 369.4507
[150,] 356.8500 13.999941 329.5620 383.9702
[151,] 226.9908 13.586378 199.6275 252.5526
[152,] 242.1068 11.630977 218.9460 264.2417
[153,] 257.2228 9.937046 237.3211 276.4037
[154,] 272.3389 8.659413 255.0725 289.2919
[155,] 287.4549 8.000080 271.4939 302.7040
[156,] 302.5709 8.111254 286.6262 318.5425
[157,] 317.6869 8.964312 300.0199 335.3376
[158,] 332.8030 10.377893 312.7188 352.9962
[159,] 347.9190 12.158031 324.3525 371.7308
[160,] 363.0350 14.167218 335.4789 390.7439
[161,] 251.8782 12.048535 228.2643 275.9140
[162,] 261.4066 10.406368 241.1415 282.2043
[163,] 270.9350 9.063295 253.2386 288.6086
[164,] 280.4635 8.168208 264.1425 296.7167
[165,] 289.9919 7.875369 273.5774 305.4187
[166,] 299.5203 8.249166 282.4680 315.9655
[167,] 309.0488 9.208776 290.3334 327.1522
[168,] 318.5772 10.596219 297.0160 339.6502
[169,] 328.1056 12.267178 303.5009 352.0193
[170,] 337.6341 14.121365 309.2548 365.3477
[171,] 263.7822 12.233558 240.8359 288.3172
[172,] 275.5122 10.551034 255.3891 296.7475
[173,] 287.2422 9.154353 269.8694 305.1486
[174,] 298.9722 8.191062 283.0682 315.0649
[175,] 310.7022 7.822934 295.4437 326.0126
[176,] 322.4322 8.131208 306.5335 338.1708
[177,] 334.1622 9.047004 316.7115 351.6283
[178,] 345.8922 10.411218 325.4625 366.0703
[179,] 357.6222 12.072785 333.7623 381.0907
[180,] 369.3522 13.925669 341.6751 396.4863
residuals(fit_sleep3)
Estimate Est.Error Q2.5 Q97.5
[1,] -4.4224973 29.05132 -61.514547 52.705542
[2,] -15.4736366 27.92169 -72.095186 37.398218
[3,] -42.9162691 27.68657 -97.083565 9.702928
[4,] 8.8834266 27.21499 -45.343313 62.199192
[5,] 23.9425908 27.15247 -28.495756 78.481704
[6,] 62.7244555 26.95167 9.733324 115.325435
[7,] 10.7554932 28.05958 -42.532600 66.720442
[8,] -101.1151063 27.97845 -156.484411 -45.973912
[9,] 18.9897600 28.89240 -38.614717 73.873065
[10,] 35.9082883 29.91054 -22.575882 94.624309
[11,] 11.0225611 28.74104 -46.420207 66.624807
[12,] -7.3797476 28.56706 -62.246063 48.052364
[13,] -12.2246854 28.18848 -67.653086 42.611356
[14,] -11.9908492 27.70427 -66.100178 41.372843
[15,] -10.3291837 27.26929 -63.268299 42.327988
[16,] -4.3455725 27.16014 -58.362653 49.285769
[17,] -8.2326294 27.71198 -63.703608 45.489897
[18,] -7.1728096 27.20679 -61.133828 45.842315
[19,] -1.7601206 28.45366 -57.135898 54.942984
[20,] 9.5109432 29.37012 -48.331215 68.263988
[21,] -13.9464789 28.30825 -68.408627 40.539306
[22,] -23.4000853 28.26923 -78.409474 31.414449
[23,] 11.8434115 27.77341 -43.109649 66.672652
[24,] 5.1901319 27.72286 -50.705897 58.324226
[25,] -3.1754491 27.46668 -57.306852 50.287383
[26,] -17.2664230 27.36969 -71.321142 37.646758
[27,] -7.2562891 27.31312 -60.727141 46.281060
[28,] 7.8673172 28.29952 -46.902381 63.329112
[29,] 8.5776961 28.73116 -47.111406 65.398877
[30,] -9.3209684 29.52641 -66.533382 48.488330
[31,] 47.0244525 29.23652 -10.405211 105.589427
[32,] 20.1222729 28.26420 -36.101339 76.132922
[33,] -2.0290762 27.42725 -55.246265 51.125473
[34,] -7.0554183 27.09343 -60.212489 46.295648
[35,] -12.3199854 27.11615 -65.024613 40.119226
[36,] -5.5198074 27.19894 -59.729482 46.716573
[37,] -28.5226670 27.51163 -83.230393 24.981537
[38,] 3.5190394 27.97805 -51.190010 57.464019
[39,] -15.2033031 28.68706 -72.775109 41.018195
[40,] 27.9230741 29.44606 -28.141041 85.402156
[41,] 15.2299968 28.75887 -40.644286 70.974598
[42,] 4.6113581 28.37165 -50.744394 60.532406
[43,] 14.0813635 27.76799 -41.230392 68.339080
[44,] 24.4818679 27.57893 -30.158464 79.838025
[45,] 13.3229763 27.51980 -39.848157 68.449778
[46,] -17.5644179 27.97273 -72.323556 36.600223
[47,] -28.3742604 27.27381 -82.706990 25.514315
[48,] 9.6540013 28.39785 -46.324605 65.980262
[49,] -39.5336267 29.01703 -95.617275 16.997098
[50,] 30.8329349 29.72642 -26.414939 88.119517
[51,] -25.8200824 28.81030 -83.472825 29.082955
[52,] -27.8220684 28.52563 -84.403339 27.684997
[53,] -7.9239236 27.28381 -61.908002 44.602168
[54,] 19.3964410 26.89147 -34.838548 71.337697
[55,] 16.4259475 27.76871 -37.786394 69.072358
[56,] -1.1489419 27.51378 -56.016911 52.937763
[57,] 132.9059031 27.85545 78.647990 189.269005
[58,] 15.6473233 27.36777 -37.737565 69.546918
[59,] -10.8459894 29.03989 -67.373623 45.229917
[60,] -98.2124258 30.00944 -156.327190 -40.213308
[61,] 16.1484427 28.99773 -41.110975 73.486273
[62,] 11.1513382 27.69033 -43.361425 64.423765
[63,] -11.3293468 27.69787 -65.576612 40.806421
[64,] 0.6079586 27.00804 -51.822298 54.164056
[65,] -11.4548895 27.12244 -65.552942 40.464624
[66,] 19.1215056 27.38460 -34.502216 71.901547
[67,] 2.3606765 27.52206 -52.115775 56.202374
[68,] 7.7735024 28.06785 -47.417939 62.873974
[69,] -17.7064094 28.52003 -73.478013 39.200478
[70,] 0.9157391 29.26041 -57.528680 56.646066
[71,] 21.1499096 28.78786 -33.665561 78.092632
[72,] 20.8302258 28.19875 -35.236500 77.211659
[73,] -23.5092619 27.26958 -78.116151 28.736202
[74,] -24.1416348 27.22089 -77.633630 29.771093
[75,] -10.7119086 26.92398 -64.345154 41.058282
[76,] -18.2061798 27.29628 -70.952469 35.498834
[77,] -6.8721977 28.09088 -63.538266 45.570025
[78,] 6.3662382 27.79417 -47.520309 61.537857
[79,] -0.5846388 28.96104 -59.291993 58.331365
[80,] 29.5153531 30.34956 -29.473041 89.642117
[81,] -8.0667615 29.47551 -65.631283 48.113588
[82,] 23.9718571 27.87158 -29.633695 78.349492
[83,] 5.0283137 27.99492 -49.749730 60.124476
[84,] 20.4306287 27.04206 -31.611977 72.917128
[85,] 1.7044413 26.84986 -50.239452 53.877277
[86,] 4.9918366 27.66997 -48.538047 59.223417
[87,] -3.7312939 27.39027 -56.501893 51.148183
[88,] -14.4626498 28.46667 -68.407088 42.337640
[89,] -12.7114815 28.96266 -68.559401 42.846398
[90,] -12.2085556 29.89559 -72.820170 45.107474
[91,] 26.2557671 29.08373 -32.384376 83.745685
[92,] 8.1446401 28.56522 -46.940341 65.119042
[93,] -33.4567191 27.27019 -87.343404 21.358675
[94,] 2.3075723 27.29365 -52.656825 56.423872
[95,] 3.1534222 27.07818 -49.255505 57.616071
[96,] 10.2096274 26.91086 -43.439267 62.370186
[97,] 3.2500799 27.43897 -50.995155 57.586716
[98,] -3.2835909 28.38747 -58.444463 52.473674
[99,] 16.8355830 29.04559 -41.215910 73.438558
[100,] 0.8586329 29.83015 -56.271659 58.558658
[101,] 9.7806587 29.17624 -50.471335 67.242640
[102,] -8.1419501 28.02675 -63.945373 46.004765
[103,] -10.9602825 27.52133 -64.564357 43.489859
[104,] -6.4155680 27.37249 -58.203165 47.315778
[105,] -21.9053681 27.54770 -75.515517 32.759783
[106,] -14.4387340 26.94169 -65.735349 37.180240
[107,] -14.5551720 27.77826 -68.505002 40.695918
[108,] 0.5827845 28.54991 -55.100657 55.917138
[109,] 17.1256843 29.01460 -39.249365 74.335068
[110,] 20.4829268 30.75429 -40.866248 80.219745
[111,] 17.3934120 29.23012 -41.481250 73.666754
[112,] -12.3479480 28.82467 -69.793875 43.014611
[113,] -16.9119575 28.30481 -72.114805 36.953427
[114,] -34.9540188 27.69187 -90.475130 18.811231
[115,] -38.1357151 27.01373 -91.710893 14.514722
[116,] 5.6050293 27.04192 -46.747282 59.694547
[117,] 38.3955674 27.20775 -14.353629 93.092845
[118,] 5.4666072 27.95529 -49.304880 60.993825
[119,] 19.5688029 28.05303 -34.391684 75.572363
[120,] -3.3214517 29.42409 -63.132141 54.647657
[121,] -6.0156628 28.52448 -61.944833 50.534813
[122,] 36.1183094 28.21760 -20.044803 90.787119
[123,] -0.9189712 27.36097 -53.476247 54.551833
[124,] 2.4735113 26.71703 -49.197802 55.773795
[125,] -13.9989155 26.92775 -68.392938 37.566020
[126,] 10.9832313 27.42443 -43.299203 64.327414
[127,] -13.4090325 26.96411 -66.418541 37.681370
[128,] -42.0228474 27.89534 -96.561361 12.640494
[129,] 5.8991570 28.33898 -49.950955 61.162970
[130,] 24.0690644 29.03305 -33.000143 81.139197
[131,] -50.3560872 28.76297 -106.746824 5.272884
[132,] 12.0256779 27.93154 -42.804297 66.286807
[133,] 26.5531327 27.79477 -28.473150 80.974803
[134,] 32.3874538 27.65695 -21.668105 86.643479
[135,] 19.9825551 27.43489 -33.642012 74.378475
[136,] 10.4294631 27.63722 -43.604363 64.507200
[137,] -2.0603829 27.80297 -56.787510 51.404356
[138,] -9.8956112 28.24449 -65.108614 46.650924
[139,] -8.8774495 29.01683 -66.411664 47.785444
[140,] -9.2247508 29.94604 -67.564865 49.909691
[141,] 17.2335823 28.95718 -41.382357 72.994673
[142,] 3.2698396 28.38840 -51.102937 58.473698
[143,] -19.4139182 27.60119 -73.531895 34.593878
[144,] -9.7448583 27.29020 -63.862960 44.669308
[145,] 15.1184861 26.73103 -37.097029 68.604181
[146,] 5.6803406 27.52211 -49.723191 60.778025
[147,] -25.6386114 28.07245 -80.267923 29.956082
[148,] 14.3350346 27.65556 -39.223088 68.812970
[149,] -4.8049386 28.49878 -60.341988 51.488042
[150,] 10.1919508 29.50187 -45.700684 67.654387
[151,] -2.4137478 29.23207 -60.117082 54.777017
[152,] -7.7812372 28.56330 -64.638779 48.431967
[153,] -17.8307953 28.12550 -73.479367 36.618382
[154,] -31.1521573 27.78498 -86.065966 21.797035
[155,] -19.3348544 27.20100 -71.524848 34.293861
[156,] 41.5229322 27.25488 -11.491111 94.771149
[157,] -36.6421307 27.22311 -90.018073 15.428966
[158,] 14.7062911 27.49704 -42.175437 68.020995
[159,] 17.5104018 28.75981 -37.547434 74.678291
[160,] 9.1486622 29.84067 -49.087875 67.528861
[161,] 18.0958579 28.81678 -40.286312 73.650913
[162,] 11.4567049 27.81100 -43.717966 65.038520
[163,] 6.9307923 28.14417 -48.067764 62.327249
[164,] 0.9068675 27.32943 -52.567247 54.445318
[165,] -11.1659817 27.17695 -64.808855 41.415541
[166,] -14.7245733 27.26764 -68.360963 39.408735
[167,] -49.7686380 27.19497 -101.579770 4.517006
[168,] -13.4897199 28.41483 -68.484911 41.568373
[169,] 22.2769757 28.45938 -33.652280 78.878061
[170,] 31.8653072 29.29141 -26.160255 88.644878
[171,] 6.2333179 28.43920 -49.953639 62.094379
[172,] -2.2294034 27.78600 -57.924534 50.987655
[173,] 9.8057348 27.41421 -43.773126 63.395967
[174,] 11.7504155 26.68218 -39.944051 64.938097
[175,] -23.6902001 27.18840 -77.165808 30.708407
[176,] 7.6058934 27.27074 -45.013038 61.278219
[177,] 0.7220444 27.00758 -50.596945 54.423699
[178,] -2.3991487 27.87346 -56.774493 50.909589
[179,] 12.0776569 29.13258 -45.792168 69.479032
[180,] -5.2599179 29.78878 -62.602602 53.182059
elpd
values: higher is better looic
values:
lower is better
elpd_diff
values that are greater than ~2 standard
errors of the elpd_diff
values indicate a significantly
better model (i.e., if elpd_diff
value is greater than 2
times the se_diff
value).
loo(fit_sleep1, fit_sleep2, fit_sleep3)
Warning: Found 3 observations with a pareto_k > 0.7 in model 'fit_sleep3'. We
recommend to set 'moment_match = TRUE' in order to perform moment matching for
problematic observations.
Output of model 'fit_sleep1':
Computed from 4000 by 180 log-likelihood matrix.
Estimate SE
elpd_loo -953.1 10.5
p_loo 3.0 0.5
looic 1906.3 21.0
------
MCSE of elpd_loo is 0.0.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.9, 1.2]).
All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.
Output of model 'fit_sleep2':
Computed from 4000 by 180 log-likelihood matrix.
Estimate SE
elpd_loo -884.7 14.3
p_loo 19.2 3.3
looic 1769.4 28.7
------
MCSE of elpd_loo is 0.1.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.4, 1.8]).
All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.
Output of model 'fit_sleep3':
Computed from 4000 by 180 log-likelihood matrix.
Estimate SE
elpd_loo -861.4 22.4
p_loo 34.3 8.5
looic 1722.8 44.7
------
MCSE of elpd_loo is NA.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.4, 1.3]).
Pareto k diagnostic values:
Count Pct. Min. ESS
(-Inf, 0.7] (good) 177 98.3% 523
(0.7, 1] (bad) 2 1.1% <NA>
(1, Inf) (very bad) 1 0.6% <NA>
See help('pareto-k-diagnostic') for details.
Model comparisons:
elpd_diff se_diff
fit_sleep3 0.0 0.0
fit_sleep2 -23.3 11.6
fit_sleep1 -91.7 21.0
print(loo(fit_sleep1, fit_sleep2, fit_sleep3), simplify = FALSE)
Warning: Found 3 observations with a pareto_k > 0.7 in model 'fit_sleep3'. We
recommend to set 'moment_match = TRUE' in order to perform moment matching for
problematic observations.
Output of model 'fit_sleep1':
Computed from 4000 by 180 log-likelihood matrix.
Estimate SE
elpd_loo -953.1 10.5
p_loo 3.0 0.5
looic 1906.3 21.0
------
MCSE of elpd_loo is 0.0.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.9, 1.2]).
All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.
Output of model 'fit_sleep2':
Computed from 4000 by 180 log-likelihood matrix.
Estimate SE
elpd_loo -884.7 14.3
p_loo 19.2 3.3
looic 1769.4 28.7
------
MCSE of elpd_loo is 0.1.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.4, 1.8]).
All Pareto k estimates are good (k < 0.7).
See help('pareto-k-diagnostic') for details.
Output of model 'fit_sleep3':
Computed from 4000 by 180 log-likelihood matrix.
Estimate SE
elpd_loo -861.4 22.4
p_loo 34.3 8.5
looic 1722.8 44.7
------
MCSE of elpd_loo is NA.
MCSE and ESS estimates assume MCMC draws (r_eff in [0.4, 1.3]).
Pareto k diagnostic values:
Count Pct. Min. ESS
(-Inf, 0.7] (good) 177 98.3% 523
(0.7, 1] (bad) 2 1.1% <NA>
(1, Inf) (very bad) 1 0.6% <NA>
See help('pareto-k-diagnostic') for details.
Model comparisons:
elpd_diff se_diff elpd_loo se_elpd_loo p_loo se_p_loo looic
fit_sleep3 0.0 0.0 -861.4 22.4 34.3 8.5 1722.8
fit_sleep2 -23.3 11.6 -884.7 14.3 19.2 3.3 1769.4
fit_sleep1 -91.7 21.0 -953.1 10.5 3.0 0.5 1906.3
se_looic
fit_sleep3 44.7
fit_sleep2 28.7
fit_sleep1 21.0
model_weights(fit_sleep1, fit_sleep2, fit_sleep3, weights = "loo")
fit_sleep1 fit_sleep2 fit_sleep3
1.447170e-40 7.419859e-11 1.000000e+00
round(model_weights(fit_sleep1, fit_sleep2, fit_sleep3, weights = "loo"))
fit_sleep1 fit_sleep2 fit_sleep3
0 0 1
The syntax below estimates random intercepts (which allows each participant to have a different intercept) to account for nested data within the same participant.
bayesianMediationSyntax <-
bf(M ~ X + (1 |i| id)) +
bf(Y ~ X + M + (1 |i| id)) +
set_rescor(FALSE) # don't add a residual correlation between M and Y
bayesianMediationModel <- brm(
bayesianMediationSyntax,
data = mydata,
seed = 52242
)
Warning: Rows containing NAs were excluded from the model.
Compiling Stan program...
Start sampling
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000174 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.74 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 6.243 seconds (Warm-up)
Chain 1: 4.468 seconds (Sampling)
Chain 1: 10.711 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.000145 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.45 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 6.054 seconds (Warm-up)
Chain 2: 4.542 seconds (Sampling)
Chain 2: 10.596 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 0.000144 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 1.44 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3:
Chain 3:
Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 3:
Chain 3: Elapsed Time: 6.43 seconds (Warm-up)
Chain 3: 4.447 seconds (Sampling)
Chain 3: 10.877 seconds (Total)
Chain 3:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 0.000144 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 1.44 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 4:
Chain 4: Elapsed Time: 5.806 seconds (Warm-up)
Chain 4: 3.928 seconds (Sampling)
Chain 4: 9.734 seconds (Total)
Chain 4:
summary(bayesianMediationModel)
Family: MV(gaussian, gaussian)
Links: mu = identity; sigma = identity
mu = identity; sigma = identity
Formula: M ~ X + (1 | i | id)
Y ~ X + M + (1 | i | id)
Data: mydata (Number of observations: 970)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
Multilevel Hyperparameters:
~id (Number of levels: 100)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
sd(M_Intercept) 0.07 0.05 0.00 0.17 1.00 1746
sd(Y_Intercept) 0.11 0.06 0.01 0.23 1.01 1144
cor(M_Intercept,Y_Intercept) 0.05 0.57 -0.94 0.95 1.00 1457
Tail_ESS
sd(M_Intercept) 1730
sd(Y_Intercept) 2027
cor(M_Intercept,Y_Intercept) 1951
Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
M_Intercept 0.00 0.03 -0.06 0.07 1.00 7652 2690
Y_Intercept 0.06 0.03 -0.01 0.13 1.00 6857 2994
M_X 0.51 0.03 0.45 0.57 1.00 8868 2660
Y_X 0.03 0.04 -0.04 0.10 1.00 7229 3120
Y_M 0.68 0.03 0.62 0.75 1.00 7216 3446
Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma_M 1.01 0.02 0.97 1.06 1.00 7747 2629
sigma_Y 1.00 0.02 0.96 1.05 1.00 6806 2912
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(
bayesianMediationModel,
"b_M_X * b_Y_M = 0", # indirect effect = a path * b path
class = NULL,
seed = 52242
)
Hypothesis Tests for class :
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob
1 (b_M_X*b_Y_M) = 0 0.35 0.03 0.29 0.4 NA NA
Star
1 *
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
mediation(bayesianMediationModel)
get_prior(
Reaction ~ 1 + Days + (1 + Days | Subject),
data = sleepstudy)
bprior <- c(
set_prior("normal(5, 5)", coef = "Days"),
set_prior("cauchy(0, 10)", class = "sd"),
set_prior("lkj(2)", class = "cor"))
bprior
Fit the model with these priors, and sample from these priors:
fit_sleep4 <- brm(
Reaction ~ 1 + Days + (1 + Days | Subject),
data = sleepstudy,
prior = bprior,
sample_prior = TRUE,
seed = 52242
)
Compiling Stan program...
Start sampling
# Evid.Ratio is the ratio of P(Days > 7) / P(Days <= 7)
(hyp1 <- hypothesis(fit_sleep4, "Days < 7"))
Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob Star
1 (Days)-(7) < 0 2.88 1.55 0.26 5.36 0.04 0.04
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
plot(hyp1)
# Evid.Ratio is the Bayes Factor of the posterior
# vs the prior that Days = 10 is TRUE (Savage-Dickey Ratio)
(hyp2 <- hypothesis(fit_sleep4, "Days = 10"))
Hypothesis Tests for class b:
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio Post.Prob
1 (Days)-(10) = 0 -0.12 1.55 -3.34 2.83 5.35 0.84
Star
1
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
plot(hyp2)
fit_sleep4 <- brm(
Reaction ~ 1 + Days + (1 + Days | Subject),
data = sleepstudy,
prior = bprior,
sample_prior = TRUE,
cores = 4,
seed = 52242
)
Compiling Stan program...
Start sampling
https://paul-buerkner.github.io/brms/articles/brms_threading.html (archived at https://perma.cc/NCG3-KV4G)
mice
?brm_multiple
imp <- mice::mice(
mydata,
m = 5,
print = FALSE)
fit_imp <- brm_multiple(
bayesianMediationSyntax,
data = imp,
chains = 2)
Compiling the C++ model
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000238 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 2.38 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 6.537 seconds (Warm-up)
Chain 1: 2.307 seconds (Sampling)
Chain 1: 8.844 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.000146 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.46 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 6.389 seconds (Warm-up)
Chain 2: 4.399 seconds (Sampling)
Chain 2: 10.788 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000159 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.59 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 6.25 seconds (Warm-up)
Chain 1: 4.599 seconds (Sampling)
Chain 1: 10.849 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.00015 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.5 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 6.729 seconds (Warm-up)
Chain 2: 4.622 seconds (Sampling)
Chain 2: 11.351 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000159 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.59 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 6.562 seconds (Warm-up)
Chain 1: 4.342 seconds (Sampling)
Chain 1: 10.904 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.000146 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.46 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 6.692 seconds (Warm-up)
Chain 2: 4.609 seconds (Sampling)
Chain 2: 11.301 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000159 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.59 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 6.795 seconds (Warm-up)
Chain 1: 2.305 seconds (Sampling)
Chain 1: 9.1 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.000147 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.47 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 6.291 seconds (Warm-up)
Chain 2: 4.601 seconds (Sampling)
Chain 2: 10.892 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000159 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 1.59 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 6.005 seconds (Warm-up)
Chain 1: 3.474 seconds (Sampling)
Chain 1: 9.479 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.000147 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 1.47 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 6.41 seconds (Warm-up)
Chain 2: 4.627 seconds (Sampling)
Chain 2: 11.037 seconds (Total)
Chain 2:
Fitting imputed model 1
Start sampling
Fitting imputed model 2
Start sampling
Fitting imputed model 3
Start sampling
Fitting imputed model 4
Start sampling
Fitting imputed model 5
Start sampling
https://paul-buerkner.github.io/brms/articles/brms_missings.html (archived at https://perma.cc/4Y9L-USQR)
?mi
bayesianRegressionImputationSyntax <-
bf(X | mi() ~ (1 |i| id)) +
bf(M | mi() ~ mi(X) + (1 |i| id)) +
bf(Y | mi() ~ mi(X) + mi(M) + (1 |i| id)) +
set_rescor(FALSE) # don't add a residual correlation between X, M, and Y
bayesianRegressionModel <- brm(
bayesianRegressionImputationSyntax,
data = mydata,
seed = 52242
)
Compiling Stan program...
Start sampling
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 1).
Chain 1:
Chain 1: Gradient evaluation took 0.000576 seconds
Chain 1: 1000 transitions using 10 leapfrog steps per transition would take 5.76 seconds.
Chain 1: Adjust your expectations accordingly!
Chain 1:
Chain 1:
Chain 1: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 1: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 1: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 1: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 1: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 1: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 1: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 1: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 1: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 1: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 1: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 1: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 1:
Chain 1: Elapsed Time: 21.405 seconds (Warm-up)
Chain 1: 15.178 seconds (Sampling)
Chain 1: 36.583 seconds (Total)
Chain 1:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 2).
Chain 2:
Chain 2: Gradient evaluation took 0.000476 seconds
Chain 2: 1000 transitions using 10 leapfrog steps per transition would take 4.76 seconds.
Chain 2: Adjust your expectations accordingly!
Chain 2:
Chain 2:
Chain 2: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 2: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 2: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 2: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 2: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 2: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 2: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 2: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 2: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 2: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 2: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 2: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 2:
Chain 2: Elapsed Time: 23.043 seconds (Warm-up)
Chain 2: 15.202 seconds (Sampling)
Chain 2: 38.245 seconds (Total)
Chain 2:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 3).
Chain 3:
Chain 3: Gradient evaluation took 0.000473 seconds
Chain 3: 1000 transitions using 10 leapfrog steps per transition would take 4.73 seconds.
Chain 3: Adjust your expectations accordingly!
Chain 3:
Chain 3:
Chain 3: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 3: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 3: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 3: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 3: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 3: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 3: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 3: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 3: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 3: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 3: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 3: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 3:
Chain 3: Elapsed Time: 23.411 seconds (Warm-up)
Chain 3: 15.25 seconds (Sampling)
Chain 3: 38.661 seconds (Total)
Chain 3:
SAMPLING FOR MODEL 'anon_model' NOW (CHAIN 4).
Chain 4:
Chain 4: Gradient evaluation took 0.000518 seconds
Chain 4: 1000 transitions using 10 leapfrog steps per transition would take 5.18 seconds.
Chain 4: Adjust your expectations accordingly!
Chain 4:
Chain 4:
Chain 4: Iteration: 1 / 2000 [ 0%] (Warmup)
Chain 4: Iteration: 200 / 2000 [ 10%] (Warmup)
Chain 4: Iteration: 400 / 2000 [ 20%] (Warmup)
Chain 4: Iteration: 600 / 2000 [ 30%] (Warmup)
Chain 4: Iteration: 800 / 2000 [ 40%] (Warmup)
Chain 4: Iteration: 1000 / 2000 [ 50%] (Warmup)
Chain 4: Iteration: 1001 / 2000 [ 50%] (Sampling)
Chain 4: Iteration: 1200 / 2000 [ 60%] (Sampling)
Chain 4: Iteration: 1400 / 2000 [ 70%] (Sampling)
Chain 4: Iteration: 1600 / 2000 [ 80%] (Sampling)
Chain 4: Iteration: 1800 / 2000 [ 90%] (Sampling)
Chain 4: Iteration: 2000 / 2000 [100%] (Sampling)
Chain 4:
Chain 4: Elapsed Time: 22.869 seconds (Warm-up)
Chain 4: 15.228 seconds (Sampling)
Chain 4: 38.097 seconds (Total)
Chain 4:
summary(bayesianRegressionModel)
Family: MV(gaussian, gaussian, gaussian)
Links: mu = identity; sigma = identity
mu = identity; sigma = identity
mu = identity; sigma = identity
Formula: X | mi() ~ (1 | i | id)
M | mi() ~ mi(X) + (1 | i | id)
Y | mi() ~ mi(X) + mi(M) + (1 | i | id)
Data: mydata (Number of observations: 1000)
Draws: 4 chains, each with iter = 2000; warmup = 1000; thin = 1;
total post-warmup draws = 4000
Multilevel Hyperparameters:
~id (Number of levels: 100)
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS
sd(X_Intercept) 0.09 0.06 0.00 0.21 1.00 918
sd(M_Intercept) 0.07 0.05 0.00 0.17 1.00 1538
sd(Y_Intercept) 0.10 0.06 0.00 0.22 1.00 1078
cor(X_Intercept,M_Intercept) 0.07 0.49 -0.85 0.89 1.00 3050
cor(X_Intercept,Y_Intercept) 0.07 0.48 -0.84 0.88 1.00 1713
cor(M_Intercept,Y_Intercept) -0.00 0.49 -0.88 0.86 1.00 2001
Tail_ESS
sd(X_Intercept) 1308
sd(M_Intercept) 2316
sd(Y_Intercept) 1356
cor(X_Intercept,M_Intercept) 2544
cor(X_Intercept,Y_Intercept) 2134
cor(M_Intercept,Y_Intercept) 2671
Regression Coefficients:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
X_Intercept -0.02 0.03 -0.08 0.05 1.00 5021 2753
M_Intercept 0.01 0.03 -0.06 0.07 1.00 7095 2599
Y_Intercept 0.06 0.03 -0.01 0.12 1.00 6428 2902
M_miX 0.51 0.03 0.45 0.58 1.00 6556 3135
Y_miX 0.04 0.04 -0.03 0.11 1.00 5554 3171
Y_miM 0.68 0.03 0.62 0.75 1.00 5676 2419
Further Distributional Parameters:
Estimate Est.Error l-95% CI u-95% CI Rhat Bulk_ESS Tail_ESS
sigma_X 0.98 0.02 0.94 1.03 1.00 5644 2574
sigma_M 1.01 0.02 0.96 1.05 1.00 6310 3142
sigma_Y 1.01 0.02 0.96 1.05 1.00 5680 2642
Draws were sampled using sampling(NUTS). For each parameter, Bulk_ESS
and Tail_ESS are effective sample size measures, and Rhat is the potential
scale reduction factor on split chains (at convergence, Rhat = 1).
hypothesis(
bayesianRegressionModel,
"bsp_M_miX * bsp_Y_miM = 0", # indirect effect = a path * b path
class = NULL,
seed = 52242
)
Hypothesis Tests for class :
Hypothesis Estimate Est.Error CI.Lower CI.Upper Evid.Ratio
1 (bsp_M_miX*bsp_Y_... = 0 0.35 0.03 0.3 0.41 NA
Post.Prob Star
1 NA *
---
'CI': 90%-CI for one-sided and 95%-CI for two-sided hypotheses.
'*': For one-sided hypotheses, the posterior probability exceeds 95%;
for two-sided hypotheses, the value tested against lies outside the 95%-CI.
Posterior probabilities of point hypotheses assume equal prior probabilities.
sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 22.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so; LAPACK version 3.10.0
locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
time zone: UTC
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mice_3.16.0 bayestestR_0.15.0 brms_2.22.0
[4] Rcpp_1.0.13-1 rstan_2.32.6 StanHeaders_2.32.10
[7] lme4_1.1-35.5 Matrix_1.7-1
loaded via a namespace (and not attached):
[1] tidyselect_1.2.1 farver_2.1.2 dplyr_1.1.4
[4] loo_2.8.0 fastmap_1.2.0 tensorA_0.36.2.1
[7] digest_0.6.37 rpart_4.1.23 lifecycle_1.0.4
[10] survival_3.7-0 processx_3.8.4 magrittr_2.0.3
[13] posterior_1.6.0 compiler_4.4.2 rlang_1.1.4
[16] sass_0.4.9 tools_4.4.2 utf8_1.2.4
[19] yaml_2.3.10 knitr_1.49 labeling_0.4.3
[22] bridgesampling_1.1-2 pkgbuild_1.4.5 plyr_1.8.9
[25] abind_1.4-8 withr_3.0.2 purrr_1.0.2
[28] nnet_7.3-19 grid_4.4.2 stats4_4.4.2
[31] fansi_1.0.6 jomo_2.7-6 future_1.34.0
[34] colorspace_2.1-1 inline_0.3.20 ggplot2_3.5.1
[37] globals_0.16.3 scales_1.3.0 iterators_1.0.14
[40] MASS_7.3-61 insight_0.20.5 cli_3.6.3
[43] mvtnorm_1.3-2 rmarkdown_2.29 generics_0.1.3
[46] RcppParallel_5.1.9 future.apply_1.11.3 reshape2_1.4.4
[49] minqa_1.2.8 cachem_1.1.0 stringr_1.5.1
[52] splines_4.4.2 bayesplot_1.11.1 parallel_4.4.2
[55] matrixStats_1.4.1 vctrs_0.6.5 boot_1.3-31
[58] glmnet_4.1-8 jsonlite_1.8.9 callr_3.7.6
[61] mitml_0.4-5 listenv_0.9.1 foreach_1.5.2
[64] jquerylib_0.1.4 tidyr_1.3.1 parallelly_1.39.0
[67] glue_1.8.0 nloptr_2.1.1 pan_1.9
[70] codetools_0.2-20 ps_1.8.1 distributional_0.5.0
[73] stringi_1.8.4 gtable_0.3.6 shape_1.4.6.1
[76] QuickJSR_1.4.0 munsell_0.5.1 tibble_3.2.1
[79] pillar_1.9.0 htmltools_0.5.8.1 Brobdingnag_1.2-9
[82] R6_2.5.1 evaluate_1.0.1 lattice_0.22-6
[85] backports_1.5.0 broom_1.0.7 bslib_0.8.0
[88] rstantools_2.4.0 coda_0.19-4.1 gridExtra_2.3
[91] nlme_3.1-166 checkmate_2.3.2 xfun_0.49
[94] pkgconfig_2.0.3