Item Information in graded response model in item response theory.
Source:R/itemInformationGRM.R
itemInformationGRM.RdItem information in graded response model in item response theory.
Usage
calc_grm_probs(a, b_thresholds, theta)
itemInformationGRM(a, b_thresholds, theta)
get_thresholds(x)Value
calc_grm_probs() returns the probability of each response category;
itemInformationGRM() returns the amount of item information.
Details
Estimates the amount of information provided by a given item in a graded response model in item response theory as function of the item parameters and the person's level on the construct (theta).
Examples
calc_grm_probs(
a = 1,
b_thresholds = 0,
theta = -4:4
)
#> [[1]]
#> [,1] [,2]
#> [1,] 0.98201379 0.01798621
#> [2,] 0.95257413 0.04742587
#> [3,] 0.88079708 0.11920292
#> [4,] 0.73105858 0.26894142
#> [5,] 0.50000000 0.50000000
#> [6,] 0.26894142 0.73105858
#> [7,] 0.11920292 0.88079708
#> [8,] 0.04742587 0.95257413
#> [9,] 0.01798621 0.98201379
#>
calc_grm_probs(
a = 1,
b_thresholds = c(-1, 1),
theta = -4:4
)
#> [[1]]
#> [,1] [,2] [,3]
#> [1,] 0.952574127 0.04073302 0.006692851
#> [2,] 0.880797078 0.10121671 0.017986210
#> [3,] 0.731058579 0.22151555 0.047425873
#> [4,] 0.500000000 0.38079708 0.119202922
#> [5,] 0.268941421 0.46211716 0.268941421
#> [6,] 0.119202922 0.38079708 0.500000000
#> [7,] 0.047425873 0.22151555 0.731058579
#> [8,] 0.017986210 0.10121671 0.880797078
#> [9,] 0.006692851 0.04073302 0.952574127
#>
itemInformationGRM(
a = 1,
b_thresholds = 0,
theta = -4:4
)
#> [[1]]
#> [1] 0.01766271 0.04517666 0.10499359 0.19661193 0.25000000 0.19661193 0.10499359
#> [8] 0.04517666 0.01766271
#>
itemInformationGRM(
a = 1,
b_thresholds = c(-1, 1),
theta = -4:4
)
#> [[1]]
#> [1] 0.04518959 0.10521059 0.19943732 0.27269606 0.28746968 0.27269606 0.19943732
#> [8] 0.10521059 0.04518959
#>
itemParameters <- data.frame(
item = c(1, 2, 3),
a = c(0.5, 1, 1.5),
b1 = c(-1, 0, 1),
b2 = c(0, 1, 2),
b3 = c(1, 2, 3)
)
calc_grm_probs(
a = itemParameters$a,
b_thresholds = get_thresholds(itemParameters),
theta = -4:4)
#> [[1]]
#> [,1] [,2] [,3] [,4]
#> [1,] 0.81757448 0.06322260 0.04334474 0.07585818
#> [2,] 0.73105858 0.08651590 0.06322260 0.11920292
#> [3,] 0.62245933 0.10859925 0.08651590 0.18242552
#> [4,] 0.50000000 0.12245933 0.10859925 0.26894142
#> [5,] 0.37754067 0.12245933 0.12245933 0.37754067
#> [6,] 0.26894142 0.10859925 0.12245933 0.50000000
#> [7,] 0.18242552 0.08651590 0.10859925 0.62245933
#> [8,] 0.11920292 0.06322260 0.08651590 0.73105858
#> [9,] 0.07585818 0.04334474 0.06322260 0.81757448
#>
#> [[2]]
#> [,1] [,2] [,3] [,4]
#> [1,] 0.98201379 0.01129336 0.004220228 0.002472623
#> [2,] 0.95257413 0.02943966 0.011293359 0.006692851
#> [3,] 0.88079708 0.07177705 0.029439663 0.017986210
#> [4,] 0.73105858 0.14973850 0.071777049 0.047425873
#> [5,] 0.50000000 0.23105858 0.149738499 0.119202922
#> [6,] 0.26894142 0.23105858 0.231058579 0.268941421
#> [7,] 0.11920292 0.14973850 0.231058579 0.500000000
#> [8,] 0.04742587 0.07177705 0.149738499 0.731058579
#> [9,] 0.01798621 0.02943966 0.071777049 0.880797078
#>
#> [[3]]
#> [,1] [,2] [,3] [,4]
#> [1,] 0.99944722 0.0004293841 9.585888e-05 2.753569e-05
#> [2,] 0.99752738 0.0019198445 4.293841e-04 1.233946e-04
#> [3,] 0.98901306 0.0085143195 1.919845e-03 5.527786e-04
#> [4,] 0.95257413 0.0364389305 8.514319e-03 2.472623e-03
#> [5,] 0.81757448 0.1349996506 3.643893e-02 1.098694e-02
#> [6,] 0.50000000 0.3175744762 1.349997e-01 4.742587e-02
#> [7,] 0.18242552 0.3175744762 3.175745e-01 1.824255e-01
#> [8,] 0.04742587 0.1349996506 3.175745e-01 5.000000e-01
#> [9,] 0.01098694 0.0364389305 1.349997e-01 8.175745e-01
#>
itemInformationGRM(
a = itemParameters$a,
b_thresholds = get_thresholds(itemParameters),
theta = -4:4)
#> [[1]]
#> [1] 0.03772830 0.05055784 0.06256878 0.07103586 0.07405834 0.07103586 0.06256878
#> [8] 0.05055784 0.03772830
#>
#> [[2]]
#> [1] 0.01766414 0.04520313 0.10542448 0.20181812 0.28587102 0.31214122 0.28587102
#> [8] 0.20181812 0.10542448
#>
#> [[3]]
#> [1] 0.001243064 0.005549652 0.024449543 0.101690726 0.338250182 0.630303345
#> [7] 0.692850803 0.630303345 0.338250182
#>
