Estimate the standard error of measurement in item response theory.
Details
Estimate the standard error of measurement in item response theory using the test information (i.e., the sum of all items' information).
See also
Other IRT:
deriv_d_negBinom()
,
discriminationToFactorLoading()
,
fourPL()
,
itemInformation()
,
reliabilityIRT()
,
test_info_4PL()
Examples
# Calculate information for 4 items
item1 <- itemInformation(b = -2, a = 0.6, theta = -4:4)
item2 <- itemInformation(b = -1, a = 1.2, theta = -4:4)
item3 <- itemInformation(b = 1, a = 1.5, theta = -4:4)
item4 <- itemInformation(b = 2, a = 2, theta = -4:4)
items <- data.frame(item1, item2, item3, item4)
# Calculate test information
items$testInformation <- rowSums(items)
# Calculate standard error of measurement
standardErrorIRT(items$testInformation)
#> [1] 3.1220949 2.2478963 1.6396572 1.3436736 1.1732756 0.9381903 0.8450600
#> [8] 1.3489596 3.0432995