Dataframe used to compute cross-time correlations.
Details
Dataframe used to calculate the association of a variable across multiple time points. It is especially useful when there are three or more time points.
See also
Other correlations:
addText()
,
cor.table()
,
crossTimeCorrelation()
,
partialcor.table()
,
vwReg()
Examples
# Prepare Data
df <- expand.grid(ID = 1:100, time = c(1, 2, 3))
df <- df[order(df$ID),]
row.names(df) <- NULL
df$score <- rnorm(nrow(df))
# Cross-Time Correlation
crossTimeCorrelationDF(id = "ID", time = "time", variable = "score", data = df)
#> ID time1 time2
#> 1 1 0.12162059 -1.07806726
#> 2 1 -1.07806726 -1.14356572
#> 3 2 -0.52964368 -0.68127316
#> 4 2 -0.68127316 -0.20244756
#> 5 3 1.68449572 -1.03377324
#> 6 3 -1.03377324 -0.15597667
#> 7 4 -0.04640064 -0.95362873
#> 8 4 -0.95362873 0.41626080
#> 9 5 0.11402961 0.06391875
#> 10 5 0.06391875 -0.91933224
#> 11 6 0.90133529 -0.79772830
#> 12 6 -0.79772830 0.66822120
#> 13 7 0.15521430 0.12868809
#> 14 7 0.12868809 -1.53306545
#> 15 8 0.20236067 -0.71753865
#> 16 8 -0.71753865 0.36169476
#> 17 9 1.39900429 0.37269896
#> 18 9 0.37269896 -1.56564429
#> 19 10 -0.05169454 0.51408210
#> 20 10 0.51408210 0.54989952
#> 21 11 0.86781691 0.68436008
#> 22 11 0.68436008 -0.16267998
#> 23 12 -1.78436472 -1.03714557
#> 24 12 -1.03714557 0.83014772
#> 25 13 0.60734694 -0.12218636
#> 26 13 -0.12218636 0.93312514
#> 27 14 -0.96127668 0.25508171
#> 28 14 0.25508171 -0.54540157
#> 29 15 0.93036074 -0.53765056
#> 30 15 -0.53765056 -0.45242607
#> 31 16 -0.43929097 -0.61622311
#> 32 16 -0.61622311 0.44163455
#> 33 17 0.48259745 0.54214438
#> 34 17 0.54214438 -2.29078465
#> 35 18 0.31035185 1.40407898
#> 36 18 1.40407898 1.37711764
#> 37 19 1.06039565 0.63217289
#> 38 19 0.63217289 1.08492804
#> 39 20 1.35645944 0.36242404
#> 40 20 0.36242404 2.16934446
#> 41 21 0.13913051 1.37632653
#> 42 21 1.37632653 -0.49144999
#> 43 22 1.53491576 -0.41619872
#> 44 22 -0.41619872 -0.52054380
#> 45 23 0.85058387 0.33449657
#> 46 23 0.33449657 -0.82935177
#> 47 24 -0.21869594 -1.54508372
#> 48 24 -1.54508372 0.23322978
#> 49 25 0.03106964 0.35786565
#> 50 25 0.35786565 1.60862422
#> 51 26 1.42985426 -0.94833964
#> 52 26 -0.94833964 1.01570554
#> 53 27 0.03773461 -1.74423940
#> 54 27 -1.74423940 -0.97007381
#> 55 28 -0.22902736 -0.97484568
#> 56 28 -0.97484568 2.69237242
#> 57 29 1.39239386 1.36007615
#> 58 29 1.36007615 -0.36541588
#> 59 30 -0.86893720 -0.50655673
#> 60 30 -0.50655673 1.21470730
#> 61 31 0.50695868 -2.09497131
#> 62 31 -2.09497131 0.03407924
#> 63 32 0.85272870 0.74322814
#> 64 32 0.74322814 0.55715361
#> 65 33 -1.24858322 -0.20787431
#> 66 33 -0.20787431 0.42396946
#> 67 34 -0.50669744 -0.61152331
#> 68 34 -0.61152331 2.41165945
#> 69 35 -0.16495814 -0.44040605
#> 70 35 -0.44040605 0.52197617
#> 71 36 -1.91832225 -1.98264996
#> 72 36 -1.98264996 0.52120016
#> 73 37 0.77778320 -0.81211887
#> 74 37 -0.81211887 0.91074832
#> 75 38 0.94875395 -1.34804945
#> 76 38 -1.34804945 0.35417586
#> 77 39 0.53026393 -0.31097493
#> 78 39 -0.31097493 -0.24415553
#> 79 40 -0.29187819 -1.12808616
#> 80 40 -1.12808616 -1.12288159
#> 81 41 2.05393864 -0.90951843
#> 82 41 -0.90951843 0.45837916
#> 83 42 -0.04661845 -0.68095460
#> 84 42 -0.68095460 -1.48882940
#> 85 43 -0.39251301 -1.74968202
#> 86 43 -1.74968202 -0.03866763
#> 87 44 -0.79715324 -0.91592054
#> 88 44 -0.91592054 0.07326746
#> 89 45 1.23817132 0.71837134
#> 90 45 0.71837134 0.53946650
#> 91 46 -1.06123399 -0.54073787
#> 92 46 -0.54073787 -0.71520471
#> 93 47 -0.17892009 0.16497028
#> 94 47 0.16497028 -0.72740817
#> 95 48 -0.53783713 -0.59966490
#> 96 48 -0.59966490 1.18208775
#> 97 49 0.18921288 0.24894911
#> 98 49 0.24894911 1.04664341
#> 99 50 -1.28930094 0.37511557
#> 100 50 0.37511557 -0.55691839
#> 101 51 0.30242663 0.22226647
#> 102 51 0.22226647 -0.96216696
#> 103 52 0.05203237 0.90004038
#> 104 52 0.90004038 -0.39490088
#> 105 53 0.95414600 -0.58821435
#> 106 53 -0.58821435 -1.47658453
#> 107 54 -1.37777577 -1.34567231
#> 108 54 -1.34567231 -0.73663796
#> 109 55 -0.47011150 1.38060934
#> 110 55 1.38060934 1.67501093
#> 111 56 1.17690663 -0.14889834
#> 112 56 -0.14889834 -0.17782336
#> 113 57 0.80312186 -0.41579535
#> 114 57 -0.41579535 1.21248959
#> 115 58 1.24036003 0.68567588
#> 116 58 0.68567588 -0.02679868
#> 117 59 0.30958051 0.24986433
#> 118 59 0.24986433 -1.35646087
#> 119 60 0.59937977 0.00864779
#> 120 60 0.00864779 0.09071661
#> 121 61 -0.65705741 -0.48178225
#> 122 61 -0.48178225 0.01775788
#> 123 62 -0.85953576 1.35770498
#> 124 62 1.35770498 1.21506118
#> 125 63 1.45391292 -0.08591198
#> 126 63 -0.08591198 -0.61756875
#> 127 64 -0.21826025 -1.32600521
#> 128 64 -1.32600521 -2.36220890
#> 129 65 -1.40996955 0.25439714
#> 130 65 0.25439714 0.29587030
#> 131 66 0.05678979 -0.10265486
#> 132 66 -0.10265486 1.95192303
#> 133 67 0.87856596 -1.30661693
#> 134 67 -1.30661693 0.09034427
#> 135 68 0.90235804 0.54942132
#> 136 68 0.54942132 -0.86983920
#> 137 69 -0.03921465 -0.51845168
#> 138 69 -0.51845168 -0.91184962
#> 139 70 0.15031364 0.44035545
#> 140 70 0.44035545 1.31978206
#> 141 71 0.24656113 0.94182660
#> 142 71 0.94182660 -0.34215133
#> 143 72 -0.27614681 0.38365678
#> 144 72 0.38365678 1.44691022
#> 145 73 1.73390029 0.45642938
#> 146 73 0.45642938 0.70750349
#> 147 74 2.06378922 0.02391059
#> 148 74 0.02391059 0.24594946
#> 149 75 0.27205914 -0.99245858
#> 150 75 -0.99245858 -0.02757795
#> 151 76 2.22284516 0.15550390
#> 152 76 0.15550390 -0.86911632
#> 153 77 -1.17448945 -1.75967731
#> 154 77 -1.75967731 0.05836159
#> 155 78 1.16451986 0.33762789
#> 156 78 0.33762789 -1.05451872
#> 157 79 0.66076911 -0.82340900
#> 158 79 -0.82340900 0.43703366
#> 159 80 0.37238811 -1.64674913
#> 160 80 -1.64674913 -1.92355227
#> 161 81 0.38083303 1.37570535
#> 162 81 1.37570535 0.82584873
#> 163 82 -0.41611500 0.98214959
#> 164 82 0.98214959 0.24218073
#> 165 83 -0.93792685 1.50585850
#> 166 83 1.50585850 -1.06585117
#> 167 84 0.16227053 0.26047039
#> 168 84 0.26047039 -1.48820199
#> 169 85 1.41518387 0.56250751
#> 170 85 0.56250751 0.64205574
#> 171 86 -0.89053264 -0.11653752
#> 172 86 -0.11653752 -0.94197475
#> 173 87 1.11582792 0.47013513
#> 174 87 0.47013513 0.86061271
#> 175 88 -0.07039665 -0.61318021
#> 176 88 -0.61318021 -0.33671496
#> 177 89 -0.21584018 0.62113229
#> 178 89 0.62113229 -1.28402652
#> 179 90 -1.30009244 -0.37676946
#> 180 90 -0.37676946 0.10374865
#> 181 91 -0.70356227 1.49741394
#> 182 91 1.49741394 -0.30282688
#> 183 92 -1.37683133 0.88317017
#> 184 92 0.88317017 0.67142028
#> 185 93 1.23002238 1.64546788
#> 186 93 1.64546788 -0.18292604
#> 187 94 -1.37925781 1.25060060
#> 188 94 1.25060060 -1.87623677
#> 189 95 -0.36878757 -2.12929731
#> 190 95 -2.12929731 0.33764603
#> 191 96 -1.57457485 -0.19631941
#> 192 96 -0.19631941 0.91506011
#> 193 97 1.07863654 1.45280285
#> 194 97 1.45280285 -1.65328109
#> 195 98 -2.76186752 0.26436916
#> 196 98 0.26436916 1.02457159
#> 197 99 -0.65918555 -0.38630438
#> 198 99 -0.38630438 -0.24249895
#> 199 100 0.22059324 -1.48109003
#> 200 100 -1.48109003 0.72469120