Skip to contents

Dataframe used to compute cross-time correlations.

Usage

crossTimeCorrelationDF(id = "tcid", time = "age", variable, data)

Arguments

id

Name of variable indicating the participant ID.

time

Name of variable indicating the timepoint.

variable

Name of variable to estimate the cross-time correlation.

data

Dataframe.

Value

dataframe with three columns in the form of: ID, time1, time2

Details

Dataframe used to calculate the association of a variable across multiple time points. It is especially useful when there are three or more time points.

See also

Other correlations: addText(), cor.table(), crossTimeCorrelation(), partialcor.table(), vwReg()

Examples

# Prepare Data
df <- expand.grid(ID = 1:100, time = c(1, 2, 3))
df <- df[order(df$ID),]
row.names(df) <- NULL
df$score <- rnorm(nrow(df))

# Cross-Time Correlation
crossTimeCorrelationDF(id = "ID", time = "time", variable = "score", data = df)
#>      ID       time1       time2
#> 1     1 -0.02010818 -2.39020034
#> 2     1 -2.39020034  0.88986536
#> 3     2 -1.48281332  0.44575035
#> 4     2  0.44575035  1.36977586
#> 5     3 -0.02011003 -0.10921759
#> 6     3 -0.10921759  0.26466174
#> 7     4  0.30384826 -0.18338848
#> 8     4 -0.18338848  0.55964967
#> 9     5 -0.18655384 -0.81227537
#> 10    5 -0.81227537 -1.64058167
#> 11    6  0.50792248  1.75433696
#> 12    6  1.75433696  0.59240020
#> 13    7  1.01671329  0.12162059
#> 14    7  0.12162059 -1.07806726
#> 15    8 -1.14356572 -0.52964368
#> 16    8 -0.52964368 -0.68127316
#> 17    9 -0.20244756  1.68449572
#> 18    9  1.68449572 -1.03377324
#> 19   10 -0.15597667 -0.04640064
#> 20   10 -0.04640064 -0.95362873
#> 21   11  0.41626080  0.11402961
#> 22   11  0.11402961  0.06391875
#> 23   12 -0.91933224  0.90133529
#> 24   12  0.90133529 -0.79772830
#> 25   13  0.66822120  0.15521430
#> 26   13  0.15521430  0.12868809
#> 27   14 -1.53306545  0.20236067
#> 28   14  0.20236067 -0.71753865
#> 29   15  0.36169476  1.39900429
#> 30   15  1.39900429  0.37269896
#> 31   16 -1.56564429 -0.05169454
#> 32   16 -0.05169454  0.51408210
#> 33   17  0.54989952  0.86781691
#> 34   17  0.86781691  0.68436008
#> 35   18 -0.16267998 -1.78436472
#> 36   18 -1.78436472 -1.03714557
#> 37   19  0.83014772  0.60734694
#> 38   19  0.60734694 -0.12218636
#> 39   20  0.93312514 -0.96127668
#> 40   20 -0.96127668  0.25508171
#> 41   21 -0.54540157  0.93036074
#> 42   21  0.93036074 -0.53765056
#> 43   22 -0.45242607 -0.43929097
#> 44   22 -0.43929097 -0.61622311
#> 45   23  0.44163455  0.48259745
#> 46   23  0.48259745  0.54214438
#> 47   24 -2.29078465  0.31035185
#> 48   24  0.31035185  1.40407898
#> 49   25  1.37711764  1.06039565
#> 50   25  1.06039565  0.63217289
#> 51   26  1.08492804  1.35645944
#> 52   26  1.35645944  0.36242404
#> 53   27  2.16934446  0.13913051
#> 54   27  0.13913051  1.37632653
#> 55   28 -0.49144999  1.53491576
#> 56   28  1.53491576 -0.41619872
#> 57   29 -0.52054380  0.85058387
#> 58   29  0.85058387  0.33449657
#> 59   30 -0.82935177 -0.21869594
#> 60   30 -0.21869594 -1.54508372
#> 61   31  0.23322978  0.03106964
#> 62   31  0.03106964  0.35786565
#> 63   32  1.60862422  1.42985426
#> 64   32  1.42985426 -0.94833964
#> 65   33  1.01570554  0.03773461
#> 66   33  0.03773461 -1.74423940
#> 67   34 -0.97007381 -0.22902736
#> 68   34 -0.22902736 -0.97484568
#> 69   35  2.69237242  1.39239386
#> 70   35  1.39239386  1.36007615
#> 71   36 -0.36541588 -0.86893720
#> 72   36 -0.86893720 -0.50655673
#> 73   37  1.21470730  0.50695868
#> 74   37  0.50695868 -2.09497131
#> 75   38  0.03407924  0.85272870
#> 76   38  0.85272870  0.74322814
#> 77   39  0.55715361 -1.24858322
#> 78   39 -1.24858322 -0.20787431
#> 79   40  0.42396946 -0.50669744
#> 80   40 -0.50669744 -0.61152331
#> 81   41  2.41165945 -0.16495814
#> 82   41 -0.16495814 -0.44040605
#> 83   42  0.52197617 -1.91832225
#> 84   42 -1.91832225 -1.98264996
#> 85   43  0.52120016  0.77778320
#> 86   43  0.77778320 -0.81211887
#> 87   44  0.91074832  0.94875395
#> 88   44  0.94875395 -1.34804945
#> 89   45  0.35417586  0.53026393
#> 90   45  0.53026393 -0.31097493
#> 91   46 -0.24415553 -0.29187819
#> 92   46 -0.29187819 -1.12808616
#> 93   47 -1.12288159  2.05393864
#> 94   47  2.05393864 -0.90951843
#> 95   48  0.45837916 -0.04661845
#> 96   48 -0.04661845 -0.68095460
#> 97   49 -1.48882940 -0.39251301
#> 98   49 -0.39251301 -1.74968202
#> 99   50 -0.03866763 -0.79715324
#> 100  50 -0.79715324 -0.91592054
#> 101  51  0.07326746  1.23817132
#> 102  51  1.23817132  0.71837134
#> 103  52  0.53946650 -1.06123399
#> 104  52 -1.06123399 -0.54073787
#> 105  53 -0.71520471 -0.17892009
#> 106  53 -0.17892009  0.16497028
#> 107  54 -0.72740817 -0.53783713
#> 108  54 -0.53783713 -0.59966490
#> 109  55  1.18208775  0.18921288
#> 110  55  0.18921288  0.24894911
#> 111  56  1.04664341 -1.28930094
#> 112  56 -1.28930094  0.37511557
#> 113  57 -0.55691839  0.30242663
#> 114  57  0.30242663  0.22226647
#> 115  58 -0.96216696  0.05203237
#> 116  58  0.05203237  0.90004038
#> 117  59 -0.39490088  0.95414600
#> 118  59  0.95414600 -0.58821435
#> 119  60 -1.47658453 -1.37777577
#> 120  60 -1.37777577 -1.34567231
#> 121  61 -0.73663796 -0.47011150
#> 122  61 -0.47011150  1.38060934
#> 123  62  1.67501093  1.17690663
#> 124  62  1.17690663 -0.14889834
#> 125  63 -0.17782336  0.80312186
#> 126  63  0.80312186 -0.41579535
#> 127  64  1.21248959  1.24036003
#> 128  64  1.24036003  0.68567588
#> 129  65 -0.02679868  0.30958051
#> 130  65  0.30958051  0.24986433
#> 131  66 -1.35646087  0.59937977
#> 132  66  0.59937977  0.00864779
#> 133  67  0.09071661 -0.65705741
#> 134  67 -0.65705741 -0.48178225
#> 135  68  0.01775788 -0.85953576
#> 136  68 -0.85953576  1.35770498
#> 137  69  1.21506118  1.45391292
#> 138  69  1.45391292 -0.08591198
#> 139  70 -0.61756875 -0.21826025
#> 140  70 -0.21826025 -1.32600521
#> 141  71 -2.36220890 -1.40996955
#> 142  71 -1.40996955  0.25439714
#> 143  72  0.29587030  0.05678979
#> 144  72  0.05678979 -0.10265486
#> 145  73  1.95192303  0.87856596
#> 146  73  0.87856596 -1.30661693
#> 147  74  0.09034427  0.90235804
#> 148  74  0.90235804  0.54942132
#> 149  75 -0.86983920 -0.03921465
#> 150  75 -0.03921465 -0.51845168
#> 151  76 -0.91184962  0.15031364
#> 152  76  0.15031364  0.44035545
#> 153  77  1.31978206  0.24656113
#> 154  77  0.24656113  0.94182660
#> 155  78 -0.34215133 -0.27614681
#> 156  78 -0.27614681  0.38365678
#> 157  79  1.44691022  1.73390029
#> 158  79  1.73390029  0.45642938
#> 159  80  0.70750349  2.06378922
#> 160  80  2.06378922  0.02391059
#> 161  81  0.24594946  0.27205914
#> 162  81  0.27205914 -0.99245858
#> 163  82 -0.02757795  2.22284516
#> 164  82  2.22284516  0.15550390
#> 165  83 -0.86911632 -1.17448945
#> 166  83 -1.17448945 -1.75967731
#> 167  84  0.05836159  1.16451986
#> 168  84  1.16451986  0.33762789
#> 169  85 -1.05451872  0.66076911
#> 170  85  0.66076911 -0.82340900
#> 171  86  0.43703366  0.37238811
#> 172  86  0.37238811 -1.64674913
#> 173  87 -1.92355227  0.38083303
#> 174  87  0.38083303  1.37570535
#> 175  88  0.82584873 -0.41611500
#> 176  88 -0.41611500  0.98214959
#> 177  89  0.24218073 -0.93792685
#> 178  89 -0.93792685  1.50585850
#> 179  90 -1.06585117  0.16227053
#> 180  90  0.16227053  0.26047039
#> 181  91 -1.48820199  1.41518387
#> 182  91  1.41518387  0.56250751
#> 183  92  0.64205574 -0.89053264
#> 184  92 -0.89053264 -0.11653752
#> 185  93 -0.94197475  1.11582792
#> 186  93  1.11582792  0.47013513
#> 187  94  0.86061271 -0.07039665
#> 188  94 -0.07039665 -0.61318021
#> 189  95 -0.33671496 -0.21584018
#> 190  95 -0.21584018  0.62113229
#> 191  96 -1.28402652 -1.30009244
#> 192  96 -1.30009244 -0.37676946
#> 193  97  0.10374865 -0.70356227
#> 194  97 -0.70356227  1.49741394
#> 195  98 -0.30282688 -1.37683133
#> 196  98 -1.37683133  0.88317017
#> 197  99  0.67142028  1.23002238
#> 198  99  1.23002238  1.64546788
#> 199 100 -0.18292604 -1.37925781
#> 200 100 -1.37925781  1.25060060



Developmental Psychopathology Lab