Skip to contents

Simulate data with a specified correlation in relation to an existing variable.

Usage

complement(y, rho, x)

Arguments

y

The existing variable against which to simulate a complement variable.

rho

The correlation magnitude, ranging from [-1, 1].

x

(optional) Vector with the same length as y. Used for calculating the residuals of the least squares regression of x against y, to remove the y component from x.

Value

Vector of a variable that has a specified correlation in relation to a given variable y.

Details

Simulates data with a specified correlation in relation to an existing variable.

Examples

v1 <- rnorm(100)
complement(y = v1, rho = .5)
#>           1           2           3           4           5           6 
#>  0.35458745  0.40045526  1.89555570  0.44679889  0.49929673  0.60133660 
#>           7           8           9          10          11          12 
#>  0.85680813 -0.14383024 -0.02278925 -0.35670924 -0.96844074 -0.65373312 
#>          13          14          15          16          17          18 
#> -0.69120714  0.70917123  0.06746997 -0.51038571 -0.89770840  0.21949938 
#>          19          20          21          22          23          24 
#> -1.76114122 -0.50075851  0.52377949  0.43862819 -0.22862074 -1.14425287 
#>          25          26          27          28          29          30 
#>  1.51070471  0.43950966  0.95198632  2.32978512 -1.08212681  0.60423987 
#>          31          32          33          34          35          36 
#> -1.39153764  0.34039149  0.66154343 -0.12390701 -1.21597194 -0.60037040 
#>          37          38          39          40          41          42 
#>  0.82236498  0.73482113 -1.14400032  0.81841119  0.40280802  0.68957707 
#>          43          44          45          46          47          48 
#> -1.29011720  0.39583607  0.12903131 -0.00104557 -2.24324488 -1.26680461 
#>          49          50          51          52          53          54 
#> -0.61916160  0.26347309 -0.14200790 -0.45432771 -0.89407864 -0.84316518 
#>          55          56          57          58          59          60 
#>  1.62388628  0.83819288  1.17311209  1.03813512 -0.25246881 -1.29205626 
#>          61          62          63          64          65          66 
#> -0.30686029  1.78705282 -0.13826610 -0.52230269 -1.24399137  1.48458756 
#>          67          68          69          70          71          72 
#>  0.11433390  2.15421156 -1.47120613  2.06704433  1.01913135  0.70995164 
#>          73          74          75          76          77          78 
#>  1.06905196  0.02790323 -0.35407264 -0.64543900  1.66132751  0.77868618 
#>          79          80          81          82          83          84 
#>  0.04826809  1.32549483  1.58844379  0.28257873 -0.67652143  0.71362599 
#>          85          86          87          88          89          90 
#> -0.67291708 -0.72840384 -3.09055925 -0.38221579 -1.34545541 -0.92559184 
#>          91          92          93          94          95          96 
#> -1.82898757  2.67002689 -1.23082025 -1.07012885  0.69474393 -1.44247632 
#>          97          98          99         100 
#>  0.62424166  0.93929601  0.57166533 -0.53728807 
complement(y = v1, rho = -.5)
#>           1           2           3           4           5           6 
#> -1.59964704  1.32532609 -0.57746064 -0.28655743  0.75125481 -0.32096253 
#>           7           8           9          10          11          12 
#> -1.95524038  1.12422415  0.80863090 -0.42352155  1.07169019 -0.51354269 
#>          13          14          15          16          17          18 
#> -0.33226623 -1.27114417  0.50458221 -2.30314242 -0.01664439 -0.50414322 
#>          19          20          21          22          23          24 
#>  0.31163003  0.73487618  1.17501205 -2.10010640 -0.85044244  1.50240789 
#>          25          26          27          28          29          30 
#>  0.98030917  1.18459957 -1.52601915 -0.34531325 -0.03968050 -0.40912642 
#>          31          32          33          34          35          36 
#>  0.30597005  1.17013936 -1.23106621 -0.32315205 -0.95150572 -0.68888098 
#>          37          38          39          40          41          42 
#>  1.24878328 -1.05439250  1.51514379 -1.94453344 -0.34605947  1.14938628 
#>          43          44          45          46          47          48 
#> -0.48752007 -0.90489985 -0.65059453 -0.06515507 -0.15333017 -1.31930869 
#>          49          50          51          52          53          54 
#>  1.05279195 -0.94253387 -0.38088964  1.14875690  0.86274966 -2.09288683 
#>          55          56          57          58          59          60 
#> -0.87065074 -0.05030089 -0.74926747  1.34276308  1.54366745  0.67020197 
#>          61          62          63          64          65          66 
#>  0.56228153 -0.23696305 -0.20541215 -1.55415403  0.05941090 -0.04459145 
#>          67          68          69          70          71          72 
#>  0.61420536  0.35507659  0.62098436  0.26284608  0.98626026 -0.13977646 
#>          73          74          75          76          77          78 
#> -0.40765430 -0.80820290 -1.49367487  0.42828860  1.12331688 -2.28901843 
#>          79          80          81          82          83          84 
#> -1.06406770  0.22444013 -0.20591437  2.00977564 -0.11251686 -0.51262287 
#>          85          86          87          88          89          90 
#>  1.52504788  1.47041510  1.14405482  0.01874037  0.83961435  2.02289067 
#>          91          92          93          94          95          96 
#>  1.51542352 -1.96406247 -0.37441769 -0.26046446  0.33080366 -1.37006993 
#>          97          98          99         100 
#>  0.01084744 -1.17291988  0.78378162  0.70280030 

v2 <- complement(y = v1, rho = .85)
plot(v1, v2)





Developmental Psychopathology Lab