Skip to contents

Drop rows with all missing (NA) values.

Usage

dropRowsWithAllNA(data, ignore = NULL)

Arguments

data

Dataframe to drop rows from.

ignore

Names of columns to ignore for determining whether each row had all missing values.

Value

A dataframe with rows removed that had all missing values in non-ignored columns.

Details

Drop rows that have no observed values, i.e., all values in the row are missing (NA), excluding the ignored columns.

See also

Examples

# Prepare Data
df <- expand.grid(ID = 1:100, time = c(1, 2, 3))
df <- df[order(df$ID),]
row.names(df) <- NULL
df$score1 <- rnorm(nrow(df))
df$score2 <- rnorm(nrow(df))
df$score3 <- rnorm(nrow(df))
df[sample(1:nrow(df), size = 100), c("score1","score2","score3")] <- NA

# Drop Rows with All NA in Non-Ignored Columns
dropRowsWithAllNA(df, ignore = c("ID","time"))
#>      ID time       score1      score2       score3
#> 1     1    1  1.467485607 -0.67987338  0.510471244
#> 3     1    3  0.359622515  1.77247739  0.636432097
#> 4     2    1  1.837521669  0.27793329 -1.013955594
#> 7     3    1  0.293728600  0.53066370  0.436178180
#> 8     3    2  1.330807535 -1.12476618 -0.164089402
#> 10    4    1  0.944012124 -1.18796740  0.415432504
#> 11    4    2 -0.163110155  2.24883111 -0.048104283
#> 12    4    3  0.020936334  1.55316175  0.198292951
#> 15    5    3 -1.017904646 -0.24942787 -0.139421427
#> 16    6    1 -0.320525550 -2.17231912 -1.325197658
#> 18    6    3 -2.168675688 -0.98048575  1.357852830
#> 19    7    1  0.066409650 -1.79278068 -1.220784861
#> 22    8    1  0.196097401  0.80626313 -1.012275885
#> 23    8    2 -0.656023781 -0.68381307 -0.432531486
#> 24    8    3 -0.478355050  0.33438806  0.345706392
#> 25    9    1  0.568878744  0.94300642  0.190927596
#> 26    9    2 -2.102626810 -0.89838767  1.287488578
#> 28   10    1  0.416918015  0.09233868  0.593561305
#> 29   10    2  0.473867599 -0.35169603 -1.815799874
#> 30   10    3 -0.062925119  0.11537300 -0.460524573
#> 31   11    1 -1.636219349 -0.14326135  0.746337982
#> 35   12    2  0.467589309 -0.12614333 -0.003256871
#> 37   13    1  0.396813229  0.91043704  0.309380270
#> 40   14    1 -0.805206472 -0.17999302  0.070972006
#> 41   14    2 -1.932053070  0.97685639 -2.313759365
#> 43   15    1  1.792486559 -0.03409839 -0.352441451
#> 44   15    2  1.123194865  1.48873220 -1.533292787
#> 45   15    3  1.609947684 -0.18983930 -1.734069209
#> 46   16    1  1.732799496 -1.08930962  0.141892735
#> 47   16    2  1.275703717  0.37108948 -0.219599601
#> 48   16    3  0.424007988 -1.02777011  0.591564494
#> 50   17    2 -0.597937324 -0.52029856 -0.372564160
#> 51   17    3 -0.722073272 -0.05224443  0.264545865
#> 53   18    2  1.473362511 -0.32797907 -0.418319774
#> 54   18    3 -0.316206077 -1.28534762 -2.078760627
#> 56   19    2 -1.986179040  0.25747566 -0.705640744
#> 57   19    3  0.705734028  0.20131940  0.986688400
#> 59   20    2  0.758480158  0.50663659 -0.496043573
#> 62   21    2  0.075529822  0.04039804  0.028015821
#> 63   21    3  0.267751527 -0.20078138  0.526890091
#> 65   22    2  1.209748781  0.16665552 -0.587592446
#> 66   22    3 -1.253055561 -0.52428478 -0.430471444
#> 67   23    1  1.765028630  0.01756390 -0.022966263
#> 68   23    2 -0.159322027  0.94851719  0.074873923
#> 69   23    3  0.898874217  0.27026578 -2.089995616
#> 70   24    1 -0.704995332 -0.16094140  1.023897173
#> 71   24    2  1.126896570  1.96519951  0.623240132
#> 72   24    3 -1.974322214  0.39554804 -1.367330008
#> 73   25    1 -1.244772830  0.87371937  0.044589523
#> 75   25    3  0.579097050 -1.48522645 -0.178469697
#> 76   26    1 -1.037890010 -0.83616230  2.101677593
#> 77   26    2  1.561622325 -0.64626921 -0.242409658
#> 78   26    3  0.101959622 -0.04743704  0.011717215
#> 80   27    2  2.325851550 -0.09973867  0.274491395
#> 81   27    3 -1.293149956  0.08599646 -0.622731928
#> 84   28    3  0.480623395 -0.90680641 -0.392461437
#> 85   29    1  2.017342464  0.59115715  0.357845575
#> 87   29    3  0.656575520  0.07687238  0.066689713
#> 88   30    1  1.026297846 -0.06783720  0.257355650
#> 90   30    3  1.120615649  0.04909540 -0.730508027
#> 91   31    1  0.399897655 -0.03280005 -0.395841246
#> 92   31    2 -0.984527658 -0.51092478 -1.415808515
#> 93   31    3 -0.502562184  0.35643054 -0.108938918
#> 95   32    2  2.191481010  0.57920526  0.450190145
#> 96   32    3 -0.165042212 -1.47515865  0.387345818
#> 97   33    1 -0.686040800  1.32380523 -0.258295014
#> 101  34    2 -0.723484004  0.62121117  0.172922695
#> 102  34    3  1.390088740  1.80910855  0.426641536
#> 103  35    1  0.681840626  1.11398601 -0.813699585
#> 106  36    1 -0.800331265  0.25594028  0.390101788
#> 107  36    2 -0.488457510 -0.77721893  0.956724098
#> 108  36    3  0.539004516 -0.95031824 -0.169973563
#> 109  37    1  1.435171017  1.23051633 -0.379977916
#> 110  37    2 -0.261838719 -0.29032133  0.144207957
#> 111  37    3 -1.418623721 -1.24524959 -0.718284089
#> 112  38    1 -0.513792720 -0.92511062  0.206108648
#> 113  38    2  0.772301225 -0.35175827 -0.367334361
#> 114  38    3  1.403682339 -0.04163083  0.788442877
#> 115  39    1 -0.015804912  0.72929742 -0.310952795
#> 117  39    3 -2.116392160  3.58694548  1.085279663
#> 118  40    1  0.150371437  0.75574301 -0.784779324
#> 120  40    3 -0.905454844  0.82934571 -1.056691432
#> 121  41    1 -0.749986903 -0.30513624 -0.996890554
#> 122  41    2 -0.786576021  0.71010332 -0.672605085
#> 124  42    1 -1.390851305  0.35822370  2.236077683
#> 127  43    1 -0.967621014  0.57434653 -0.840974862
#> 129  43    3 -0.069089037  3.03758116  0.429372125
#> 130  44    1 -0.426188249 -1.59166713  0.811017521
#> 131  44    2 -2.251403727 -0.67368924 -0.174299949
#> 132  44    3 -0.914170952  0.72857280 -0.316371483
#> 133  45    1 -0.800524582 -1.15156224 -0.493001895
#> 135  45    3  0.660649173 -0.13207528 -1.103744984
#> 138  46    3 -0.781818406  1.16794898 -0.307474298
#> 140  47    2  1.015236070 -0.16311581 -1.710825390
#> 141  47    3  0.294676272  1.27526535  0.595309608
#> 143  48    2 -0.822289822  1.47436052 -0.085739756
#> 144  48    3  1.691546077 -1.51743472  0.032286550
#> 146  49    2  0.929693563  0.10746739  0.808938069
#> 148  50    1  0.617598091  0.44851998 -1.703857479
#> 149  50    2 -0.830615177  0.50807095  0.525504589
#> 150  50    3 -1.133375927  0.35021264 -0.803033850
#> 151  51    1 -0.156378319  0.75821367 -0.237655721
#> 152  51    2 -0.243091747  0.29092872  0.855349059
#> 153  51    3 -1.129264413  0.02285959 -0.469487045
#> 154  52    1 -0.062192485 -0.20814311  0.118012784
#> 155  52    2  0.487082631 -0.26361162  1.247441555
#> 156  52    3 -0.054636953 -1.98413580 -0.688397299
#> 158  53    2 -1.453375000 -0.45429735 -0.042932415
#> 160  54    1 -1.391001690 -0.28917939 -1.466993454
#> 161  54    2 -2.244235104  0.51190457  2.235778380
#> 163  55    1 -0.686551360 -0.22247479 -1.167913785
#> 164  55    2 -0.482915280 -1.45215149  0.149528831
#> 166  56    1 -0.381078571  1.42857119 -1.046203407
#> 167  56    2  0.116047733 -0.48214099  0.172260011
#> 168  56    3  0.892492885  0.99238818 -0.307020751
#> 171  57    3  1.452055280 -0.10744815  1.643828484
#> 172  58    1  2.556923589 -0.77320677  0.814559724
#> 173  58    2  1.072728070 -0.73627880  0.825113161
#> 174  58    3 -1.178914989  0.81570668 -0.345773922
#> 176  59    2  0.053855088 -0.67104663 -0.643214383
#> 177  59    3 -0.234343833 -0.42158960  0.942059477
#> 181  61    1 -0.816198742 -0.69541367  0.794574264
#> 182  61    2  0.295544263 -0.38354996 -0.914850956
#> 184  62    1 -0.280015436 -1.10798826  0.819669363
#> 185  62    2 -0.063043628 -0.95593877  1.521035738
#> 186  62    3 -0.132833831 -0.63576842  0.265354790
#> 187  63    1  0.629361770  0.76675745  0.619066940
#> 188  63    2 -0.641231532  0.68695810  0.471080837
#> 189  63    3 -0.104018599  1.72142669  0.463144213
#> 190  64    1 -1.388668827  0.85130925 -0.160161363
#> 191  64    2  0.437214206  0.42990828 -0.035685472
#> 192  64    3  0.315862087 -1.05527774 -0.574684816
#> 195  65    3  0.812534989 -0.31946356 -0.502357106
#> 196  66    1  0.275042593  0.47360616  1.088076265
#> 197  66    2  0.006009411  0.81251610 -0.392953019
#> 198  66    3  2.010186412  0.25661233 -0.660461119
#> 199  67    1  0.313808823 -2.14876584 -0.149025127
#> 200  67    2 -0.846162712  0.69010855 -0.875485298
#> 201  67    3 -0.134641045 -1.77244383  1.699001571
#> 204  68    3  0.204499683 -0.74870221 -0.080948993
#> 205  69    1 -0.341768421 -0.79432104  2.446781428
#> 206  69    2  1.842157648  0.30078439  0.383899034
#> 207  69    3 -0.205909535  0.05466585 -1.052171578
#> 209  70    2  0.242188060 -1.16518670 -0.630819250
#> 210  70    3  0.053455720  0.26055583 -0.953595979
#> 211  71    1 -0.125146310 -2.41711628 -0.079982465
#> 212  71    2  0.247787238  1.14908502  1.062695902
#> 216  72    3 -0.814967320  0.48619572 -0.764770258
#> 220  74    1 -0.042837457 -0.20777098 -0.542495361
#> 221  74    2 -1.281559297  0.90728141 -2.094578220
#> 222  74    3  0.967582242  0.81142513  0.378050059
#> 224  75    2 -2.166425254 -0.45430696 -0.587104530
#> 225  75    3 -0.303348223 -0.31572854  0.100086359
#> 227  76    2  1.427395820 -1.01659466  0.659843996
#> 228  76    3 -0.619946595  2.02996478 -0.626745356
#> 230  77    2  0.267551749 -1.58790685  0.876503187
#> 232  78    1  0.234340520 -0.72310219  2.280390353
#> 234  78    3  1.898439401 -2.14081548 -0.573636034
#> 237  79    3  1.764724810  0.49461317  0.900082480
#> 238  80    1  0.506063430 -1.52664365  1.989430257
#> 241  81    1  1.372876146 -0.56354343  0.204160839
#> 242  81    2  0.594581979 -1.44585342  0.044228525
#> 243  81    3  0.809307437 -0.47655578  0.627097488
#> 244  82    1 -0.929351716  1.01460047 -0.947249554
#> 245  82    2 -0.968882573 -0.11802003 -1.122826944
#> 246  82    3 -0.563483049 -0.35432184 -0.020323649
#> 250  84    1  0.412530895  1.44473649  1.056927128
#> 253  85    1 -0.279921977 -0.73561961 -0.066451341
#> 254  85    2 -0.184466622 -0.01523526 -0.608107881
#> 256  86    1  0.599068143 -0.77089599  0.393169958
#> 257  86    2 -0.345024460 -1.91152294 -0.385205931
#> 258  86    3  0.328683628  0.17789966 -0.609263122
#> 259  87    1 -0.002001793  0.19632069 -0.384385146
#> 260  87    2 -1.643640470  0.05004416 -0.901423669
#> 262  88    1  1.311300782 -0.13668239  0.561821259
#> 263  88    2 -0.725708977  1.22750061 -1.757278522
#> 266  89    2  0.739965537 -0.42990567  2.506001719
#> 267  89    3 -0.379227989 -0.65191632 -0.980587165
#> 268  90    1  0.855040406 -1.32275532  1.566125055
#> 269  90    2  0.929726811 -0.61100236 -0.758867435
#> 271  91    1  0.575606727  0.22113162 -0.327150452
#> 273  91    3  0.873922726  1.00351963  1.519723106
#> 275  92    2  0.631952946 -0.87353493 -0.402339950
#> 276  92    3  0.489051671 -0.77371083 -1.495466433
#> 279  93    3 -0.115346633 -0.48962671 -1.813867623
#> 280  94    1  0.402961199 -0.66608550 -0.951775432
#> 281  94    2 -1.329553215 -1.08965423  1.126852099
#> 282  94    3  0.850032275 -1.04090695  0.139889065
#> 283  95    1  1.105681923  0.50160668  0.100339977
#> 284  95    2  0.404141906  0.04135376 -1.204528629
#> 285  95    3 -0.123141511 -0.05308168 -0.083458296
#> 289  97    1 -0.219531175 -0.13683359 -1.190506799
#> 291  97    3 -1.582876585  0.33701264  0.777407773
#> 292  98    1  0.084967784  0.76451066 -0.221089724
#> 294  98    3 -0.023462572 -0.16096887  0.115230043
#> 295  99    1  0.084693918  1.50726103  1.533269573
#> 296  99    2 -0.325065508 -0.12169384 -0.655774460
#> 297  99    3  0.505923564 -0.24341478  0.858378701
#> 298 100    1  0.415272046  0.70815719 -1.187670552
#> 300 100    3  0.033445330 -0.31655127 -0.266362163



Developmental Psychopathology Lab