Estimate marginal and conditional probabilities using Bayes theorem.
Usage
pA(pAgivenB, pB, pAgivenNotB)
pB(pBgivenA, pA, pBgivenNotA)
pAgivenB(pBgivenA, pA, pB = NULL, pBgivenNotA = NULL)
pBgivenA(pAgivenB, pB, pA = NULL, pAgivenNotB = NULL)
pAgivenNotB(pAgivenB, pA, pB)
pBgivenNotA(pBgivenA, pA, pB)Value
The requested marginal or conditional probability. One of:
the marginal probability of
Athe marginal probability of
Bthe conditional probability of
AgivenBthe conditional probability of
BgivenAthe conditional probability of
Agiven NOTBthe conditional probability of
Bgiven NOTA
See also
Other bayesian:
deriv_d_negBinom()
Examples
pA(pAgivenB = .95, pB = .285, pAgivenNotB = .007171515)
#> [1] 0.2758776
pB(pBgivenA = .95, pA = .285, pBgivenNotA = .007171515)
#> [1] 0.2758776
pAgivenB(pBgivenA = .95, pA = .285, pB = .2758776)
#> [1] 0.9814135
pAgivenB(pBgivenA = .95, pA = .285, pBgivenNotA = .007171515)
#> [1] 0.9814134
pAgivenB(pBgivenA = .95, pA = .003, pBgivenNotA = .007171515)
#> [1] 0.285
pAgivenB(pBgivenA = 1/3, pA = 9/10, pBgivenNotA = 1)
#> [1] 0.75
pBgivenA(pAgivenB = .95, pB = .285, pA = .2758776)
#> [1] 0.9814135
pBgivenA(pAgivenB = .95, pB = .285, pAgivenNotB = .007171515)
#> [1] 0.9814134
pBgivenA(pAgivenB = .95, pB = .003, pAgivenNotB = .007171515)
#> [1] 0.285
pBgivenA(pAgivenB = 1/3, pB = 9/10, pAgivenNotB = 1)
#> [1] 0.75
pAgivenNotB(pAgivenB = .95, pB = .003, pA = .01)
#> [1] 0.007171515
pBgivenNotA(pBgivenA = .95, pA = .003, pB = .01)
#> [1] 0.007171515
