Find overall accuracy.
Usage
accuracyOverall(predicted, actual, dropUndefined = FALSE)
wisdomOfCrowd(predicted, actual, dropUndefined = FALSE)
Value
ME
= mean errorMAE
= mean absolute errorMSE
= mean squared errorRMSE
= root mean squared errorMPE
= mean percentage errorMAPE
= mean absolute percentage errorsMAPE
= symmetric mean absolute percentage errorMASE
= mean absolute scaled errorRMSLE
= root mean squared log errorrsquared
= R-squaredrsquaredAdj
= adjusted R-squaredrsquaredPredictive
= predictive R-squared
Details
Compute overall accuracy estimates of predicted values in relation to actual values. Estimates of overall accuracy span all cutoffs. Some accuracy estimates can be undefined under various circumstances. Optionally, you can drop undefined values in the calculation of accuracy indices. Note that dropping undefined values changes the meaning of these indices. Use this option at your own risk!
See also
Mean absolute scaled error (MASE):
https://stats.stackexchange.com/questions/108734/alternative-to-mape-when-the-data-is-not-a-time-series
https://stats.stackexchange.com/questions/322276/is-mase-specified-only-to-time-series-data
https://stackoverflow.com/questions/31197726/calculate-mase-with-cross-sectional-non-time-series-data-in-r
https://stats.stackexchange.com/questions/401759/how-can-mase-mean-absolute-scaled-error-score-value-be-interpreted-for-non-tim
Predictive R-squared:
https://www.r-bloggers.com/2014/05/can-we-do-better-than-r-squared/
Other accuracy:
accuracyAtCutoff()
,
accuracyAtEachCutoff()
,
nomogrammer()
,
optimalCutoff()
,
posttestOdds()
Examples
# Prepare Data
data("USArrests")
# Calculate Accuracy
accuracyOverall(predicted = USArrests$Assault, actual = USArrests$Murder)
#> ME MAE MSE RMSE MPE MAPE sMAPE MASE RMSLE
#> 1 162.972 162.972 32814.24 181.147 -2382.823 2382.823 91.16591 44.6861 2.990233
#> rsquared rsquaredAdj rsquaredPredictive
#> 1 0.6430008 0.6355633 0.6163406
wisdomOfCrowd(predicted = USArrests$Assault, actual = 200)
#> Warning: essentially perfect fit: summary may be unreliable
#> Warning: essentially perfect fit: summary may be unreliable
#> Warning: ANOVA F-tests on an essentially perfect fit are unreliable
#> Warning: essentially perfect fit: summary may be unreliable
#> Warning: essentially perfect fit: summary may be unreliable
#> Warning: ANOVA F-tests on an essentially perfect fit are unreliable
#> ME MAE MSE RMSE MPE MAPE sMAPE MASE
#> individual -29.24 76.32 7661.2400 87.52851 14.62 38.16 23.239460 Inf
#> crowdAveraged -29.24 29.24 854.9776 29.24000 14.62 14.62 7.886503 Inf
#> RMSLE bracketingRate
#> individual 0.6310922 0.4808163
#> crowdAveraged 0.1572068 0.4808163